CONSTRUCCIÓN Y CERTIFICACIÓN DE CONJUNTOS DE CONFORMIDAD CON

IEC 61439-1 y 2

Las nuevas normas IEC 61439-1 e IEC 61439-2 sustituyeron a las normas anteriores IEC 60439-1 en enero de 2009.

Todos los cuadros eléctricos nuevos deben ajustarse a estas normas nuevas. La norma IEC 61439-1 define las reglas generales para cuadros eléctricos o conjuntos de aparamenta de baja tensión. Proporciona definiciones e indica las condiciones de uso, requisitos de construcción, características técnicas y requisitos de verificación.

IEC 61439-2 es una norma de productos que define los requisitos específicos (reglas para conjuntos).

Así, la nueva serie de normas IEC 61439 define con mayor precisión la construcción de conjuntos de aparamenta de baja tensión y su inspección, y especifica las responsabilidades de las partes implicadas, diferenciando entre las funciones del fabricante original (Legrand) y las del fabricante del conjunto (constructor del cuadro).

Legrand, en calidad de fabricante original, es responsable de la realización de las 13 verificaciones de diseño que se definen en el Anexo D de la norma IEC 61439-1 y que permiten obtener los certificados de conformidad.

El fabricante del conjunto construye la envolvente de materiales eléctricos de conformidad con las reglas para conjuntos especificadas en esta guía.

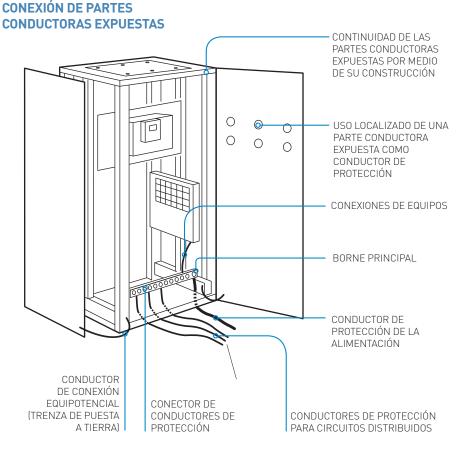
El fabricante del conjunto lleva a cabo las 10 verificaciones rutinarias individuales en cada conjunto que construye, lo que permite al fabricante del conjunto preparar una declaración de conformidad y obtener la aprobación del conjunto.

La finalidad de este cuaderno de taller es ayudar a los fabricantes del conjunto por medio de la definición de las principales reglas de construcción y el suministro de información detallada sobre el procedimiento de certificación de la norma IEC 61439 (versión de marzo de 2012).

CONTENIDO

Construcción de conjuntos	
Reglas de construcción para conjuntos de metal Reglas de construcción para conjuntos totalmente aislados Selección y montaje de envolventes Uso de barras de cobre rígidas Uso de barras flexibles Cables y conductores Conductores de neutro y conductores de protección El cableado de los aparatos. Separaciones en el interior de un conjunto Pulsadores e indicadores. Grados de protección Manipulación de conjuntos	. 6 8 12 16 20 28 36 38 40 41
Certificación de conjuntos	
Normas IEC 614391 y 2	44
Ensayos que debe realizar el fabricante original	
Las 13 verificaciones de diseño en profundidad	
Respuesta a los ensayos Ensayos que debe realizar el fabricante del conjunto	
Ejemplo de declaración de conformidad	
Certificado de ensayo	
Informe de inspección	
Límites de calentamiento para conjuntos Ensayo de calentamiento de conformidad con	
la norma IEC 61439-1	
Métodos de ensayo	
Balance térmico Equipos de refrigeración	
Anexos	86
Documentación	106

Reglas de construcción para conjuntos de metal


Las reglas que se describen a continuación resumen los requisitos de las normas IEC 60204-1, IEC 61439-2, IEC 60364 e IEC 1140 y recomendaciones de construcción razonables.

Se consideran como partes conductoras expuestas o masas todas las partes metálicas a las que el usuario puede acceder directamente, aunque estén recubiertas por pintura o un revestimiento, a no ser que se demuestre que con el grosor aplicado estos posean propiedades aislantes conocidas y testadas (ejemplo: película adherida a la pieza). El concepto de masas o partes conductoras expuestas también se amplía a los siguientes casos:

- Todas las piezas metálicas que sean inaccesibles para el usuario pero a las que pueda acceder un trabajador, aunque sea cualificado, incluso después de su desmontaje, debido a que su disposición o dimensiones planteen un riesgo apreciable de contacto (ejemplos: perfiles, placas, soportes de equipos, etc.).
- Todas las piezas metálicas intermedias que sean inaccesibles pero que estén en contacto mecánico con partes conductoras expuestas, debido a que pueden transmitir una tensión (ejemplo: transmisiones de un mecanismo). Las piezas que son totalmente inaccesibles (para el personal que las utiliza o que trabaja con ellas), las partes conductoras expuestas que, debido a su pequeño tamaño (menos de 50 x 50 mm), no pueden entrar en contacto con el cuerpo (a menos que sea posible agarrarlas con los dedos o sostenerlas

en la mano), núcleos de contactores, electroimanes, etc., no se consideran partes conductoras expuestas y no tienen que estar

conectadas a un conductor de protección.

CONEXIÓN DEL CONDUCTOR DE PROTECCIÓN

El conector de conductores de protección, marcado con el símbolo 🖨, está conectado al chasis o la estructura principal. Dispone de una borna para la conexión del conductor de protección de la alimentación. Esta borna debe tener un tamaño compatible con un conductor que tenga la sección definida en la tabla que aparece abajo. Los conductores de protección de los circuitos con carga están conectados al mismo conector. La reconexión bajo un mismo punto de apriete no está permitida. Con la excepción de las barras conectoras de los conjuntos de potencia diseñadas para conectarse por medio de bornes, un simple orificio roscado o una lengüeta para clavija soldable no se consideran suficientes. No está permitido rascar la pintura ni retirar el revestimiento.

SECCIÓN MÍNIMA DEL CONDUCTOR DE PROTECCIÓN (IEC 61439-1, SECCIÓN 8.8, TABLA 5)

SECCIÓN DE Conductores de Fase S _{pr.} (mm ²)	SECCIÓN MÍNIMA DEL CONDUCTOR DE PROTECCIÓN CORRESPONDIENTE S _{pe} (mm²)
S _{ph} < 16	S_{ph}
16 < S _{ph} < 35	16
35 < S _{ph} < 400	S _{ph} /2
400 < S _{ph} < 800	200
S _{ph} < 800	S _{ph} /4

EQUIPOTENCIALIDAD DE LAS PARTES CONDUCTORAS EXPUESTAS

Las partes conductoras expuestas deben estar conectadas eléctricamente unas a otras para que no pueda aparecer ninguna tensión peligrosa entre partes conductoras expuestas que estén accesibles simultáneamente. Esta continuidad se puede obtener a través de la construcción o el uso de conductores de enlaces equipotenciales.

CONTINUIDAD DE LAS PARTES CONDUCTORAS EXPUESTAS POR MEDIO DE SU CONSTRUCCIÓN

Las conexiones entre los diversos componentes del conjunto se debe proteger de forma efectiva contra daños mecánicos y químicos. Se debe comprobar la compatibilidad electroquímica de los metales. La retirada de un componente no debe provocar la discontinuidad de la conexión. Por lo tanto, las partes conductoras expuestas no

deben estar conectadas "en serie".

En la medida de lo posible, la conexión eléctrica debe depender de la fijación mecánica (por ejemplo, un tornillo común), de modo que la segunda función no se pueda lograr sin la primera.

Se recomienda la existencia de redundancia en los puntos de conexión. Para las cubiertas, placas y piezas similares, se considera que las fijaciones metálicas, tornillos, pernos y remaches son adecuados si se han retirado todos los restos de pintura y no hay ningún equipo eléctrico (sin su propio conductor de protección) fijado a ellos.

Los sistemas en los que se utilicen clips, pasadores, arandelas con pasador o remaches roscados que perforen el revestimiento de la superficie se deben comprobar de conformidad con el ensayo de continuidad (véase la página 55).

Los equipos XL³ aseguran, por construcción, la continuidad de las partes conductoras expuestas

CONTINUIDAD DE PARTES CONDUCTORAS EXPUESTAS A TRAVÉS DE CONDUCTORES DE CONEXIÓN EQUIPOTENCIAL

Si las partes conductoras expuestas (puerta, pantalla protectora, panel de cierre, etc.) no llevan fijado ningún dispositivo ni equipo, se debe proporcionar la conexión equipotencial de estas partes conductoras expuestas por medio de un conductor, con una sección mínima de 2,5 mm² si está protegido mecánicamente (conductor en un cable de varios núcleos, conductor aislado con una envoltura protectora, con el conductor acoplado a lo largo de todo su recorrido, etc.). Esta sección se debe incrementar a 4 mm² si el conductor de conexión no está protegido o si está sometido a operaciones repetidas (abertura de una puerta, manipulación). Las conexiones de este conductor deben disponer de un contacto fiable con las partes conductoras expuestas conectadas (pintura retirada, protección contra la corrosión y el aflojamiento). Se debe comprobar la continuidad de acuerdo con los métodos descritos en la página 55.

Nota: Normalmente, las conexiones equipotenciales creadas por los conductores son independientes de las funciones mecánicas y, por ello, puede que no se vuelvan a conectar después de que se lleven a cabo trabajos de mantenimiento. Para limitar el riesgo de que ocurra esto, en la medida de lo posible, las conexiones deben estar cerca de las fijaciones y estar etiquetados de forma inequívoca: conductores verdes/amarillos o marcados en ambos extremos con dichos colores y con la presencia del símbolo ecrca de las conexiones.

SECCIÓN MÍNIMA DE LOS CONDUCTORES DE CONEXIÓN EQUIPOTENCIAL (IEC 61439-1)

CORRIENTE ASIGNADA DE Funcionamiento (a)	SECCIÓN MÍNIMA DEL CONDUCTOR DE CONEXIÓN EQUIPOTENCIAL (mm²)
le ≤ 25	2,5
25 < le ≤ 32	4
32 < le ≤ 63	6
63 < le ≤ 80	10
80 < le < 160	16
160 < le ≤ 200	25
200 < le ≤ 250	35

CONEXIÓN DE EQUIPOS

Si los dispositivos o equipos están fijados a partes conductoras expuestas y, en particular, si dichas partes son extraíbles (puertas, paneles, placas, etc.), el equipo fijado se debe conectar directamente a un conductor de protección si dispone de un borne para esta finalidad. Se debe seleccionar una sección para este conductor en función de la que tengan los conductores de fase que alimentan al equipo en cuestión, de acuerdo con la tabla que aparece en la página anterior. Los bornes de los conductores de puesta a tierra de protección no se deben utilizar para ninguna otra función (por ejemplo, sujeción mecánica).

USO DE LAS PARTES CONDUCTORAS EXPUESTAS COMO CONDUCTORES DE PROTECCIÓN

Este tipo de utilización está permitido siempre que se tome una serie de medidas de precaución, si bien las aplicaciones localizadas o específicas se deben distinguir de las aplicaciones generales o sistemáticas en función del ámbito en el que se utilicen. Las partes conductoras expuestas utilizadas como conductores de protección deben

como conductores de protección deben tener una conductancia suficiente y equivalente a la que se obtendría con el uso de conductores de cobre. Esta característica se debe comprobar por medio de los ensayos descritos en la página 55 (continuidad de las partes conductoras expuestas y resistencia a sobreintensidades).

Todas las conexiones entre las distintas partes se deben proteger contra daños mecánicos, químicos y electrodinámicos. Se debe limitar el riesgo de que se desmonte una pieza que pueda ocasionar la interrupción de un circuito de protección:

- Ya sea mediante la combinación de una función esencial con la conexión eléctrica, de modo que el dispositivo o equipo no pueda funcionar normalmente, o porque en una inspección visual resulte obvio que está incompleto
- O mediante la limitación de la cantidad de piezas que componen el circuito de protección a una sola en el caso de una aplicación localizada de la medida
- O mediante el uso de la estructura, bastidor o chasis principal del dispositivo o equipo en el caso de una aplicación generalizada

Conexión equipotencial entre el techo y la estructura de una envolvente

USO LOCALIZADO DE UNA PARTE CONDUCTORA EXPUESTA COMO CONDUCTOR DE PROTECCIÓN

Normalmente, se utiliza esta medida cuando uno o varios equipos que no disponen de un borne de conexión como conductor de protección propio (indicadores con bases metálicas, mecanismos de funcionamiento metálicos, etc.) están instalados en una pieza tal como una cubierta, panel, puerta, etc.

Además de las reglas generales que ya se han definido, también se deben tomar las precauciones siguientes:

- El contacto eléctrico entre el componente que actúa como soporte y el equipo o equipos debe tratarse para asegurarse de que sea fiable (retirada de la pintura, protección contra la corrosión, resistencia a aflojamiento, etc.)
- La conexión equipotencial adicional entre el componente de soporte y el circuito de protección principal (tanto si se ha creado con partes conductoras expuestas o con conductores) se debe dimensionar con arreglo a la corriente máxima, que es igual a la suma de las corrientes de cada uno de los equipos fijados, de conformidad con la tabla de la página 28.

El valor de la corriente de cortocircuito (véase la página 24) debe estar limitado al que corresponda a la alimentación del equipo fijado más potente.

USO GENERALIZADO DE LAS PARTES CONDUCTORAS EXPUESTAS COMO CONDUCTORES DE PROTECCIÓN

Esta medida se puede aplicar cuando existe una estructura conductora continua lo bastante grande como para interconectar las demás partes conductoras expuestas y los conductores de conexión equipotenciales. Por lo tanto, se deben suministrar los dispositivos o medios de conexión que corresponda, incluidos los equipos que puedan instalarse en el futuro (como, por ejemplo, en el caso de los grupos de envolventes).

La sección equivalente S debe permitir el

paso de cualquier corriente de cortocircuito, calculada en función de la corriente máxima limitada por el dispositivo que protege la alimentación del equipo y el tiempo de desconexión del dispositivo.


Si no se conoce el posible bucle de defecto, o incluso el dispositivo de protección, (lo cual suele ocurrir en el caso de envolventes y armarios "vacíos"), se debe realizar una comprobación para asegurarse de que la sección conductora equivalente del material utilizado sea, al menos, igual a la del conductor de protección de cobre que se requiere para la potencia instalada (véase la tabla de la página 30). En la práctica, se puede comprobar la sección equivalente de cobre para los materiales utilizados con la fórmula siguiente:

S del material = n x S de cobre

(solo es válida para condiciones de instalación y temperatura similares). Donde:

- n: 1,5 para aluminio
- n: 2,8 para hierro
- n: 5,4 para plomo
- n: 2 para latón (Cu Zn 36/40).
- S: sección del conductor de protección en mm²

siempre y cuando estén totalmente interconectados con el conjunto y conectados con bornas Viking 3 apropiadas. Las bornas Viking 3 para conductores de protección se han diseñado y probado especialmente para el uso definido. Cumplen la norma IEC 60947-7-2. La conductividad equivalente de los perfiles utilizados se ajusta a las reglas de determinación de las normas IEC 60364 e IEC 60947-7-2. Se ha certificado por medio del informe LCIE 285380.

TIPO DE PERFIL CON ARREGI La norma IEC 60715	SECCIÓN EQUIVALENTE DE Conductor Pe de Cobre (mm²)	
TH 35 x 5,5	ப	10
TH 35 x 7,5	ш	16
TH 35 x 15 Legrand (1,5 mm de grosor)	Ц	35
TH 35 x 15 estándar (2 mm de grosor)	Ц	50
G32		35

Reglas de construcción para conjuntos totalmente aislados

Sólo las envolventes realizadas con materiales aislantes pueden responder a la denominación "protección de aislamiento total".

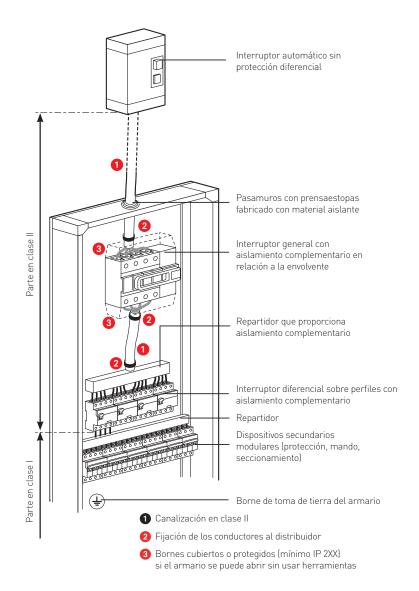
Esto no impide que las envolventes metálicas también puedan proporcionar un nivel de seguridad equivalente a la clase II. Estas envolventes se denominan de clase II B.

Se denomina grupo de clase II si los productos son de clase II, así como su aplicación es en cumplimiento de las disposiciones normativas en lo que no está dentro del ámbito de la norma NF EN 61439.

REGLAS GENERALES DE DISEÑO PARA CONJUNTOS CON PROTECCIÓN DE AISLAMIENTO TOTAL

REGLAS GENERALES DE DISEÑO PARA CONJUNTOS TOTALMENTE AISLADOS

- El aislamiento básico de los equipos se duplica por medio del aislamiento complementario que proporciona la envolvente, lo que recibe el nombre de doble aislamiento.
- Debe ser posible realizar un ensayo de la separación física de los dos aislamientos por separado
- Las piezas metálicas no están conectadas a los conductores de protección
- Se considera que los conductores de protección son partes bajo tensión
- Debe evitarse que los conductores entren en contacto con las piezas metálicas a su alrededor en el caso de que se suelten accidentalmente


REGLAS DE CONSTRUCCIÓN

- Se debe construir el cuadro de forma que ninguna tensión se pueda transmitir desde el interior hacia el exterior.
- Los dispositivos debenestar completamente cubiertos por material aislante. El símbolo
 debe ser visible desde el exterior.
- La envolvente debe estar fabricada con un material aislante capaz de soportar los esfuerzos eléctricos, mecánicos y térmicos a los que pueda ser sometido y ser resistente al fuego y al paso del tiempo.
- La envolvente no debe tener orificios en ningún punto por el que pasen partes conductoras, de modo que no se pueda transmitir tensión al exterior de la envolvente. Por lo tanto, las piezas mecánicas tales como mecanismos de los equipos de control, con independencia de cuál sea su tamaño, deben estar aisladas en el interior de la envolvente. No debe ser posible sustituir tornillos aislantes por tornillos metálicos si ello afecta negativamente al aislamiento.

- La envolvente debe tener, al menos, una protección IP 3XD en la posición de instalación.
- El chasis y las piezas metálicas internas no deben estar conectadas al circuito de protección. Esto también es aplicable a equipos que tengan un borne de conductor de puesta a tierra de protección. Se debe colocar un marca en el exterior y el interior de la envolvente.
- Se recomienda prestar una atención especial al cableado, lo que incluye la fijación de todos los conductores cerca de las conexiones o, aún mejor, hacerlos pasar por un conducto aislado que proporcione un nivel óptimo de seguridad cuando haya que realizar trabajos.
- Si un conductor de puesta a tierra de protección tiene que pasar a través del cuadro, se debe conectar a los bornes suministrados, identificarse claramente y aislarse del resto del conjunto. Posteriormente, estos conductores se deben tratar de la misma forma que los conductores bajo tensión.
- Si las puertas o paneles del conjunto se pueden retirar sin necesidad de una llave o herramienta, debe suministrarse un obstáculo hecho de material aislado, que no se pueda extraer sin usar una herramienta para evitar cualquier contacto accidental con las partes bajo tensión y con las partes conductoras bajo tensión del conjunto.
- Asimismo, los tornillos de fijación de las paredes no deben estar en contacto con el chasis interior (arandela aislada) y deben estar protegidos contra cualquier contacto (cubierta acoplable en la cabeza).

Ciertos conjuntos pueden ser tratados parcialmente en clase II, es el caso de una instalación alimentada por un aparato de conexión no diferencial. La instalación se debe realizar exactamente de la misma forma que un conjunto clase II hasta los bornes de salida de los interruptores diferenciales que proporcionan protección efectiva contra el contacto indirecto.

Selección y montaje de envolventes

La selección de envolventes para crear un conjunto de distribución depende en primer lugar del volumen que se necesita para instalar los equipos y sistemas de distribución (juegos de barras, repartidores, sistema de repartición optimizada o repartición I.S.) y sus conexiones. Para que esta selección resulte más sencilla, la gama XL³ de Legrand está segmentada en función de la corriente máxima del aparato de cabecera que se puede instalar en la envolvente en condiciones normales. No obstante, puede que se necesiten los datos del balance térmico si las condiciones son desfavorables.

Dependiendo de la versión y el método de instalación, los tamaños de los equipos o filas de equipos se definen por la altura de la placa frontal. Por lo tanto, la capacidad de una envolvente depende directamente de la altura útil para recibir las placas frontales. Se debe tener en cuenta el volumen requerido para las conexiones, especialmente del aparato de cabecera (conformidad con los radios de curvatura de los conductores entrantes).

Las celdas para cables interiores (en envolventes de 36 módulos) o exteriores fomentan la disipación del calor y facilitan en gran medida el tendido del cableado de los conjuntos. También permiten la instalación de un juego de barras lateral en envolventes con una profundidad limitada.

Todos los modelos de envolventes de la gama XL³ ofrecen diversas soluciones de distribución estándar u optimizadas apropiadas para su volumen.

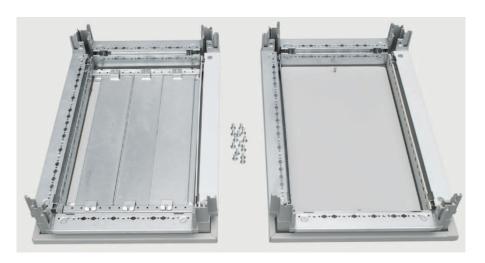
Para las envolventes XL³ 4000/6300, el tamaño del un juego de barras que se vaya a instalar determinará en gran medida la profundidad

Una gama completa de envolventes, desde el armario XL³ 160 "totalmente modular" a la envolvente XL³ 6300

CARACTERÍSTICAS DE L	AS ENVOLVENTES XL ³	XL³ 160			
Versión		Aislada	Metal	Montaje empo- trado	
Corriente máxima del equi	ро	160 A	160 A	160 A	
Corriente de corta duración	ı lcw 1 s	-	-	-	
Resistencia al fuego según	la norma IEC 60695-2-1	750 °C/5 s	750 °C/5 s	750 °C/5 s	
	Sin puerta	IP 30	IP 30	IP 30	
Protección contra cuerpos sólidos y líquidos	Con puerta	IP 40	IP 40	IP 40	
	Con puerta y juntas	IP 43	IP 43	-	
Protección frente a	Sin puerta	IK 04	IK 07	IK 04	
impactos mecánicos	Con puerta	IK 07	IK 08	IK 08	
Anchura del equipo (númer	o de módulos)	24	24	24	
Anchura total (mm)		575	575	670	
Número de filas de módulo frontal (mm)	s o altura de la placa	2 a 6	2 a 6	3 a 6	
Altura total (mm)		450 a 1050	450 a 1050	695 a 1145	
Profundidad total (mm)		147	147	100	
Color			RAL 7035		

de la envolvente. Estas envolventes también se pueden equipar con separaciones internas (formas 2a a 4b) para que puedan cumplir todos los requisitos.

Cuando las condiciones de instalación sean especialmente exigentes (instalación en exteriores, ambientes húmedos o corrosivos, etc.), se pueden utilizar envolventes de las gamas Atlantic, Marina o Altis.


Los exhaustivos ensayos a los que Legrand somete a las envolventes, los equipos y dispositivos permiten asegurarse de que se proporcionan los niveles de resultados declarados y se simplifica el proceso de certificación de conjuntos.

Las envolventes XL³ de Legrand están diseñadas para cumplir todos los requisitos de distribución de potencia hasta 6300 A. Desde el armario XL³ 160 a la envolvente XL³ 6300, todos ofrecen niveles de resultados óptimos y una instalación muy sencilla.

Las envolventes XL³ se dividen en cinco gamas en función de la intensidad máxima admisible: XL³ 160, XL³ 400, XL³ 800, XL³ 4000 y XL³ 6300.

Todas las gamas están disponibles en una gran cantidad de tamaños y versiones distintas (aislada, metálica, IP 30 e IP 55).

	XL ³ 400		XL3 800				XL ³ 4	4000	XL3 6300	
Aislada	Metal	IP 55	Metal		IP 55		Metal		Metal	
400 A	400 A	250 A	801) A	630 A		4000 A		6300 A	
25 kA	25 kA	25 kA	25	kA	25	25 kA		kA	110 kA	
750 °C/5 s	750 °C/5 s	750 °C/5 s	750 °	C/5 s	750 °	C/5 s	750 °C/30 s		750 °C/30 s	
IP 30	IP 30	-	IP 30		-		IP 30		IP 30	
IP 40	IP 40	-	IP 40 -		-	-		-		
IP 43	IP 43	IP 55	IP 43		IP 55		IP 55		-	
IK 04	IK 07	-	IK	07	-		IK 07		IK 07	
IK 07	IK 08	IK 08	IK 08		IK	08	IK	08	-	
24	24	24	24	36	24	36	24	36	36	
575	575	650	660	910	700	950	725	975	1425	
550 a 1750	550 a 1150	400 a 1000	1000 a 1800		1000 a	1000 a 1800		/ 2000	2000	
600 a 1900	600 a 1200	615 a 1115	1050 a 1950		1095 a	a 1995	2000 y 2200		2200	
147	147	100	230		25	250		25, 975	475, 725, 975	
	RAL 7035			RAL	7035		RAL	7035	RAL 7035	

Desde el tamaño $\rm XL^3$ 400 en adelante, las envolventes de Legrand se entregan por piezas que el constructor del cuadro debe montar.

La estructura y los equipos se deben montar de acuerdo con las instrucciones que aparecen en las guías que se entregan con los productos.

Debe prestarse atención especial para respetar los pares de apriete indicados.

Para la unión de las envolventes se deben utilizar los accesorios propuestos por Legrand.

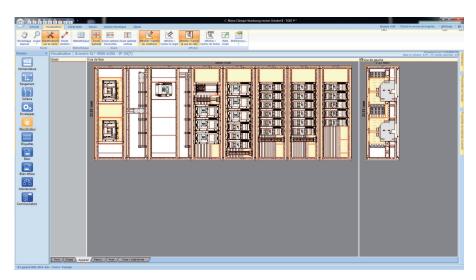
++

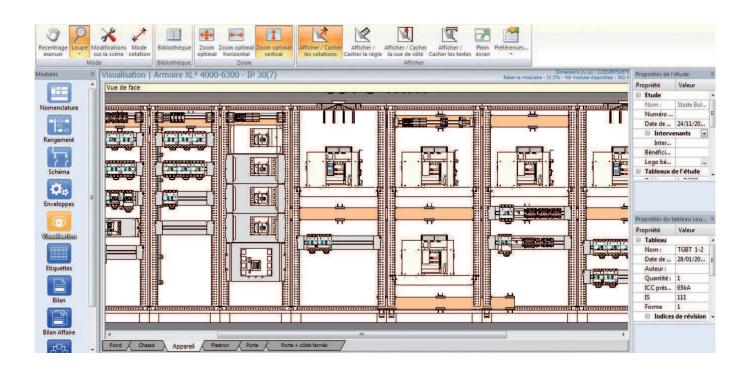
Los cuadernos de montaje de XL³ detallan las instrucciones del conjunto y proporcionan

información adicional para la selección e instalación de los equipos, accesorios y sistemas de distribución.

Los cuadernos de montaje se pueden descargar en:

http://www.legrand.es


La lista está disponible en el Anexo de la página 107



El software XLPRO³ 6300 de uso sencillo proporciona asistencia para el diseño de cuadros eléctricos de cualquier potencia. La base de datos contiene todos los productos Legrand relacionados con los cuadros de distribución, así como sus características y precios.

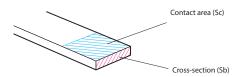
Determina automáticamente las envolventes que se necesitan y la disposición del cuadro en función de los equipos y sistemas de distribución que se vayan a instalar y la gran variedad de parámetros personalizables. La interfaz gráfica y el diseño modular lo hacen especialmente fácil de utilizar y permiten adaptarlo a distintas formas de trabajar.

Uso de barras de cobre rígidas

El cableado con juegos de barras rígidas se selecciona cuando se tienen que transportar corrientes altas. Este método de cableado proporciona mejores resultados de refrigeración que con la utilización de conductores aislados y permite aumentar la densidad de corriente, pero tiene el inconveniente de que hay partes bajo tensión desnudas y el proceso de montaje es más largo y complejo.

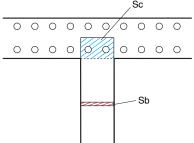
La realización de juegos de barras implica trabajos de mecanizado, plegado y conformado para los que se requiere un alto grado de experiencia para evitar que las barras pierdan resistencia o se creen tensiones parásitas. Lo mismo resulta aplicable a las conexiones entre barras, cuya calidad depende del tamaño y condiciones de las áreas de contacto, y de la presión del contacto.

Se recomienda colocar la barra de neutro en la parte delantera del juego de barras.

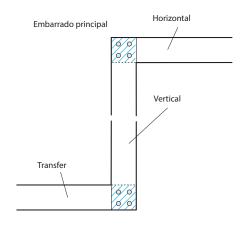

Esto proporciona:

- Mayor seguridad
- Conexión sencilla de los circuitos alimentados entre fases y neutro
- Identificación más sencilla del sistema de puesta a tierra del neutro
- Reducción del campo magnético emitido

DIMENSIONES DE LAS ÁREAS DE CONTACTO

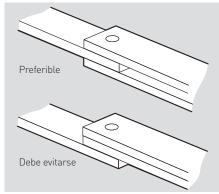

El área de contacto (Sc) debe ser, al menos, 5 veces mayor que la sección transversal de la barra (Sb).

 $Sc > 5 \times Sb$



Para los enlaces de continuidad de los juegos de barras principales, es aconsejable establecer contactos a lo largo de toda la longitud de la barra para asegurar una transferencia de calor óptima.

Para las ramificaciones de los juegos de barras que salgan del juego de barras principal, el área de contacto puede ser más pequeña, de acuerdo con la condición Sc > 5 x Sb.

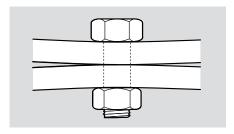


Para las placas de conexión de equipos, el contacto se debe realizar en toda la superficie de la placa para su uso a la corriente asignada.

Es preferible colocar las barras de canto en lugar de planas, ya que así se facilita la disipación de calor por medio de la convección natural. De lo contrario, debe reducirse la capacidad de transporte de corrientes de las barras.

Conexión en la barra de extensión, el adaptador o el distribuidor

PRESIÓN DE CONTACTO


La presión de contacto entre las barras se consigue por medio de tornillos cuyo tamaño, calidad, cantidad y par de apriete se seleccionan en función de la corriente y las dimensiones de las barras que se vayan a conectar.

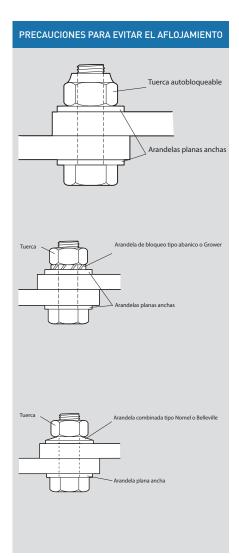
Si la presión de contacto es demasiado alta, se superará el límite de elasticidad de la barra. El calentamiento podría ocasionar cierta deformación que se traducirá en una reducción de esta presión al enfriarse posteriormente.

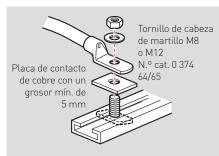
Por lo tanto, es aconsejable distribuir la presión mediante el incremento del número de puntos de apriete y el uso de arandelas anchas o placas traseras.

INDICIO REVELADOR

La colocación de una marca tal como pintura o laca quebradiza hará visible cualquier aflojamiento y también puede servir para comprobar que el apriete se haya realizado correctamente.

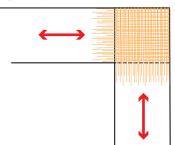
Un par de apriete demasiado alto o una cantidad insuficiente de tornillos pueden provocar una deformación que reduzca el área de contacto.


Conexión en barras 120 x 10 (4000 A)


Conexión doble: barras 100 x 10 (3200 A) y barras 80 x 10 (2500 A) en barras 120 x 10 comunes

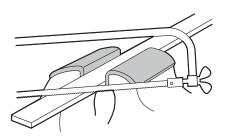
	VALORES D	E REFERENCIA PARA LAS C	ARACTERÍSTICAS I	DE LOS TORNILLOS	Y PARES DE APR	IETE RECOMENDAI	oos
Grosor de barra	1 barra	I (A) 2 o más barras	Anchura de barra	Cantidad mínima de tornillos	Ø del tornillo (mm)	Clase (calidad)	Par (Nm)
	1,5	-	< 25	1	M8	8-8	15/20
	/00		22	1	M10	6-8	30/35
	< 400	-	< 32	2	M6	8-8	10/15
	< 630	630 -		1	M12	6-8	50/65
			< 50	2	M10	6-8	30/35
5 mm				2	M8	8-8	15/20
3 111111	800	1250	< 80	4	M8	8-8	15/20
			< 00	4	M10	6-8	30/35
	1000	1650	< 100	4	M10	8-8	40/50
	1000	1030	V 100	2	M12	6-8	50/60
	1600	2000	< 125	3	M12	6-8	50/60
	-	2500	< 80	3	M12	8-8	70/85
10 mm	-	3200	< 100	4	M12	8-8	70/85
	-	4000	< 125	6	M12	8-8	70/85

Si los pares de apriete son demasiado altos, se superará el límite de elasticidad de los pernos y el cobre se deformará.



Cuando sea necesario conectar conductores con terminales sobre barras en C, se debe utilizar una placa de contacto de cobre. Cuando se conecten barras flexibles, es aconsejable comprobar que el contacto entre la barra flexible y la barra en C sea correcto. Si este contacto no es satisfactorio, también será necesario utilizar una placa de base.

ESTADO DE LAS SUPERFICIES EN CONTACTO


A no ser que se produzca una oxidación notable (oscurecimiento significativo o aparición de carbonato de cobre o "verdín"), las barras de cobre no requieren ninguna preparación especial. La limpieza con agua acidulada está prohibida, ya que, aparte de los riesgos, requiere neutralización y aclarado.

Se pueden lijar las superficies (grano 240/400), con arreglo a las instrucciones de lijado indicadas anteriormente, de modo que las rayaduras de las barras que estén en contacto sean perpendiculares.

CORTE Y TALADRADO DE BARRAS

Normalmente, el cobre se conforma en seco, pero se necesita lubricación para trabajos de taladrado o corte a alta velocidad.

Corte con sierra (diente medio 8D) en un torno de banco con protecciones de las mordazas.

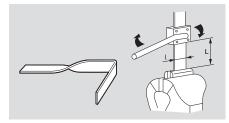
Es posible practicar agujeros con taladros diseñados para acero, pero es preferible usar taladros especiales (con canales prolongados para facilitar la extracción de virutas).

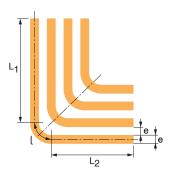
Se puede utilizar una perforadora hidráulica para hacer agujeros de precisión de forma sencilla y sin generar virutas.


PLEGADO DE BARRAS

Se recomienda encarecidamente realizar un dibujo a escala 1:1 de las barras, especialmente en el caso de que se plieguen o se apilen las barras.

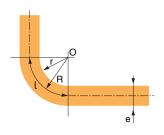
Las barras están separadas por su grosor "e". La longitud total de la barra antes del plegado es igual a la suma de las partes rectas que no están sometidas a ninguna deformación (L1 + L2) y la longitud l de los elementos curvados medida sobre la línea de neutro (en teoría, en el centro del grosor del metal), es decir, L1 + L2 + l.


Para realizar el cálculo, hay que basarse en la herramienta utilizada y el radio de curvatura real r.



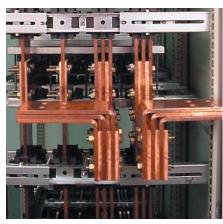
Plegado en V: r mín. = e

CREACIÓN DE UNA TORSIÓN: La longitud L de la torsión es, al menos, el doble de la anchura l de la barra



Cálculo de la longitud l

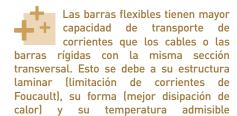
Pliegue a 90°:


$$l = \frac{3\pi R}{4} = \frac{\pi}{4} (2r + e)$$

Fórmula útil: l = R x 1.57

Plegado de una barra de cobre de 10 mm de grosor con una herramienta hidráulica de mano

Ejemplo de plegado de tres barras apiladas para crear tomas de alimentación



Los kits de conexiones prefabricadas para DMX³, que contienen barras de

cobre cortadas, plegadas y taladradas, simplifican enormemente la construcción de conjuntos conformes a las reglas.

Uso de barras flexibles

Con las barras flexibles resulta más fácil realizar conexiones a los equipos y crear enlaces que se pueden adaptar a prácticamente cualquier requisito. Normalmente, las barras flexibles se utilizan para corrientes superiores a 100 A. Al igual que las barras rígidas, se pueden utilizar para la conexión directa a las placas de conexión de los equipos. Además de garantizar la seguridad y un acabado de alta calidad, dan un toque estético.

(aislamiento de PVC hasta 105 °C).

ESTADO DE LAS SUPERFICIES EN CONTACTO

Como con cualquier conductor, la capacidad de transporte de corrientes de las barras flexibles varía en función de las condiciones de uso e instalación:

- Temperatura ambiente (real en la envolvente)
- Periodo de uso (carga continua o cíclica)
- Barras independientes o agrupadas (unas al lado de las otras en contacto o con separadores)
- Ventilación: natural (IP < 30), forzada (ventilador) o ninguna (IP > 30)
- Tendido vertical u horizontal

La considerable variabilidad de todas estas condiciones se traduce en capacidades de transporte de corrientes muy distintas (en una proporción de 1 a 2, o incluso mayor).

DE TRANSF ARRAS FLE	ORRIENTES EGRAND
Sección	

Referencia	Sección transversal (mm)	le (A) IP < 30	Ithe (A) IP > 30
0 374 10	13 x 3	200	160
0 374 16	20 x 4	320	200
0 374 11	24 x 4	400	250
0 374 67	20 x 5	400	250
0 374 17	24 x 5	470	520
0 374 12	32 x 5	630	400
0 374 44	40 x 5	700	500
0 374 57	50 x 5	850	630
0 374 58	50 x 10	1250	800

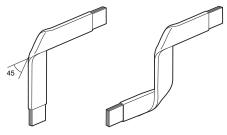
Un uso incorrecto puede derivar en calentamientos que sean incompatibles con el aislamiento y puede ocasionar perturbaciones e incluso daños en los equipos que estén conectados o se encuentren próximos.

CORRIENTES Ie (A) E Ithe (A) DE LAS BARRAS FLEXIBLES

- le (IP < 30): capacidad máxima de transporte de corrientes permanentes en envolventes abiertas o ventiladas. La posición de las barras y la distancia relativa entre ellas aseguran una refrigeración adecuada. La temperatura en el interior de la envolvente debe ser similar a la temperatura ambiente.
- Ithe (IP > 30): capacidad máxima de transporte de corrientes permanentes en envolventes selladas. Se pueden instalar las barras de forma que estén cerca unas de las otras, pero no deben estar en contacto. La temperatura en el interior de la envolvente puede llegar a 50 °C.

PLEGADO Y TALADRADO

Las barras flexibles se pueden conformar manualmente sin necesidad de ninguna herramienta especial, aunque se requiere cierta destreza para lograr un acabado perfecto.


Si hay que hacer varias conexiones (dependiendo del número de polos), empiece con la barra más larga. Se eliminará el riesgo de que las conexiones siguientes, que se realizarán de la misma forma que la primera, sean demasiado cortas.

Si es posible, compense cualquier plegado en una dirección con otro en la dirección contraria para limitar el desplazamiento relativo de las láminas de cobre.

No se deben pelar y perforar los extremos hasta que se haya acabado el conformado.

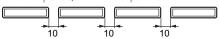
Es preferible realizar los orificios mediante punzonado (escasa deformación y sin virutas). Use placas guía de apoyo para realizar orificios con taladros.

Ejemplos de plegado

Pliegue de 90° (planos paralelos)

Bayoneta (planos paralelos)

Conexión a DPX³ 250 con barras de 24 x 5


CONDICIONES PARA LA INSTALACIÓN Y EL TENDIDO

La forma en la que se instalan las barras flexibles puede tener un efecto considerable en su capacidad de refrigeración y de soportar fuerzas electrodinámicas en caso de cortocircuito.

Dada la gran variedad de configuraciones, resulta muy difícil establecer reglas universales sobre la forma de fijar las barras en su posición en relación con los cortocircuitos.

A continuación se muestran tres configuraciones estándar, por orden de preferencia:

A: barras planas, 10 mm de separación

B: barras de canto, 10 mm de separación

C: barras de canto y en contacto

Las distancias de referencia indicadas en la tabla que aparece abajo no tienen en cuenta la resistencia mecánica de los soportes utilizados, que pueden estar sometidos a fuerzas significativas. En general, se debe utilizar lo siguiente:

- Dispositivos personalizados (tornillos y arandelas mecanizados) en el modo A
- Arandelas de separación en el modo B (precaución: algunas arandelas solo actúan como separadores para la disipación de calor y se necesitarán abrazaderas adicionales para proporcionar resistencia mecánica)
- Abrazaderas para el modo C, que se debería limitar a casos en los que los posibles cortocircuitos no superen 15 kA

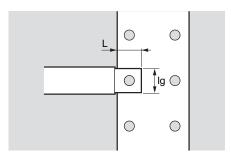
	ransversal rras (mm)		13 x 3		20 :	x 4 - 20 24 x 4	x 5		24 x 5		32 :	x 5 - 40	x 5		50 x 5			50 x 10	
Configu	ración ^[1]	А	В	С	А	В	С	А	В	С	А	В	С	А	В	С	А	В	С
	10	350	150	100		250	150		500	400		500	400			500			
	15	250	100	70	500	150	100		400	250		300	250		500	350			
	20	200	80	50	350	100	100	500	300	200		250	200		300	250			500
	25	150	60		300	100	80	400	200	150		200	150		250	200		500	400
	30	100			250			350	150	100	500	150	150		200	150		400	350
lpk (kA)	40				200			250	100		400	100	100		150	100		300	250
ipk (kA)	50				150			200			300			500	100			250	200
	60							150			250			450				200	150
	70							100			200			400			500	150	100
	80										150			350			450	100	
	90										100			300			400		
	100													250			350		

(1) A: barras planas, 10 mm de separación - B: barras de canto, 10 mm de separación - C: barras de canto y en contacto

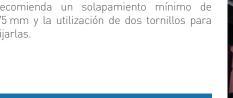
Fijación de las barras flexibles

Cuando se produce un cortocircuito de alta intensidad (> 25 kA), es posible que se deformen las barras

lexibles.


En este nivel, la existencia de aislamiento limita el riesgo de contacto con una parte conductora expuesta.

Para cortocircuitos de muy alta intensidad (alrededor de 50 kA), el riesgo principal consiste en la separación de las conexiones. Por lo tanto, se recomienda realizar las conexiones mediante tornillos que atraviesen las barras.


CONEXIÓN

Las barras flexibles tienen la ventaja de que se pueden conectar directamente a las barras de cobre rígidas o a las placas de conexión de los aparatos sin necesidad de usar terminales. Las superficies de conexión de las barras flexibles se deben dimensionar en función de su sección transversal.

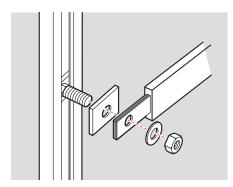
La longitud de solapamiento L debe ser, al menos, igual a la anchura de la barra lg o 5 veces su grosor, la que represente el mayor

Para las barras de 10 mm de grosor, se recomienda un solapamiento mínimo de 75 mm y la utilización de dos tornillos para fijarlas.

DIÁMETROS DE TORN	ILLO RECOMENDADOS
Anchura de barra	Ø del tornillo
13 mm	M6
20 mm	M6/M8
25 mm	M8
32 mm	M10
50 mm ^[1]	M12

(1) Para barras de 10 mm de grosor, utilice dos tornillos M12

Las barras flexibles se deben fijar de modo que los laminados de cobre permanezcan firmemente sujetos en su sitio. Se recomienda utilizar arandelas anchas o una placa de cobre.


Conexión de una barra de 50 x 10 con dos tornillos M12 referencia 0 374 65 con arandelas anchas integradas

Fijación de una barra de 50 x 10 con una placa de cobre

Fijación directa de barras flexibles de 5 mm de grosor entre dos barras rígidas con la misma separación

Las barras flexibles se deben conectar a barras con sección en forma de C con tornillos de cabeza de martillo referencia 4 044 91/92 (M8/M12). Si el contacto no es satisfactorio, puede que sea necesario utilizar una placa de cobre.

Cables y conductores

La gran variedad de instalaciones, rangos de potencias nominales, e incluso la legislación y prácticas de trabajo locales hacen que no haya un modelo estándar para el cableado de los cuadros.

Existen diversos tipos de conductores. La elección depende del uso que se les vaya a dar, que está claramente definido para las instalaciones. No obstante, este no siempre es el caso de los conjuntos de distribución. Además de la capacidad de transporte de corrientes, esta elección depende de los requisitos relativos al cuadro, la tensión asignada, el método de instalación, el tipo de aislamiento, los tipos de aplicación, etc.

SECCIÓN DE LOS CONDUCTORES DEL CABLEADO DEL INTERIOR DE LOS CONJUNTOS

La elección de los conductores que se van a utilizar en el interior del conjunto y su sección corresponde al fabricante original. Los conductores deben tener una sección mínima que se ajuste a la IEC 60364-5-52.

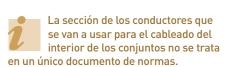
La tabla siguiente, que se ha extraído del Anexo H de la norma IEC 61439-1 y se ofrece con fines meramente informativos, contiene ejemplos de cómo adaptar la norma IEC 60364-5-52 a las condiciones del interior del conjunto.

Existen dos tipos de conductores:

- PVC para conductores con aislamiento de PVC o de goma, generalmente utilizados para conductores de hasta 35 mm² - PR para conductores con aislamiento de polietileno o elastómero. En la práctica, normalmente están reservados para secciones de más de 35 mm²

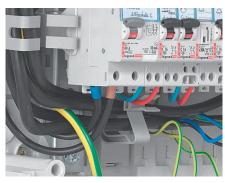
Las condiciones de instalación y temperatura ambiente se han establecido empíricamente:

- IP < 30 para conductores instalados con buenas condiciones de refrigeración (envolvente abierta o con ventilación natural, densidad de cableado baja a media, temperatura en el interior de la envolvente similar a la temperatura ambiente, hasta 35 °C)
- IP > 30 para conductores instalados con malas condiciones de refrigeración (envolvente estanca, densidad de cableado alta, cables de varios núcleos, temperatura en el interior de la envolvente que puede alcanzar 50 °C)

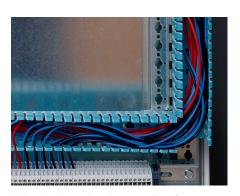

	VALORES DE REFERENCIA DE LA SECCIÓN MÍNIMA (en mm²)								
		<u> </u>	Espacio de, al menos, 1 v	vez el diámetro del cable					
Especificaciones del fabricante	Cables monoconductores ex bandeja de cab 6 cables (2 circuitos trifás	oles perforada.	Cables monoconductores colocados en horizontal y separados al aire libre						
	35 °C	55 °C	35 °C	55 °C					
Sección del conductor mm²	Capacidad máxima de tran	sporte de corrientes Imax ^c	Capacidad máxima de transporte de corrientes Imax ^b A						
1,5	14	9	23	15					
2,5	20	13	32	21					
4	28	18	43	28					
6	35	23	55	36					
10	49	32	77	50					
16	68	44	103	67					
25	91	59	137	89					
35	113	74	170	110					
50	138	90	206	134					
70	179	116	264	171					
95	218	-	321	208					
120	255	-	372	242					

 $^{^{}c}$ Capacidad de transporte de corrientes l_{30} para un circuito trifásico de la IEC 60364-5-52:2009, tabla B.52.10, columna 5 (método de instalación: punto F de la tabla B.52.1). Valores de sección transversal inferiores a 25 mm² calculados de acuerdo con la IEC 60364-5-52, Anexo D. k_2 = 0,88 (punto 4 de la tabla B.52.17, dos circuitos)

d Capacidad de transporte de corrientes I_{30} para un circuito trifásico de la IEC 60364-5-52:2009, tabla B.52.10, columna 7 (método de instalación: punto G de la tabla B.52.1). Valores de sección transversal inferiores a 25 mm² calculados de acuerdo con la IEC 60364-5-52, Anexo D. (k_2 = 1)



La columna 1 es aplicable cuando se instalan conductores de circuitos distintos en contacto y agrupados (por ejemplo, instalación en canalización o en mazos). La columna 2 es aplicable cuando los conductores o cables están separados al aire libre (véase la foto de al lado). En la página 30 se indica la sección habitual de los conductores de protección (PE) de conjuntos.



• La norma IEC 60364 recomienda que la sección se determine en función de los métodos de instalación 31 y 32.
En la práctica, el método es difícil de aplicar, ya que para la aplicación de los factores de corrección se requiere información que únicamente se conoce después de realizar la instalación: las partes tendidas en vertical, las partes tendidas en horizontal, grupos, cantidad de capas, conductores o cables independientes, así como saber la temperatura ambiente en la envolvente, que siempre resulta difícil de determinar.
• La norma IEC 61439-1 no recomienda

ninguna sección, pero indica un "rango de corriente" para los ensayos de calentamiento. Los conductores considerados tienen aislamiento de PVC y no se especifica la temperatura ambiente. Por lo tanto, estas condiciones no cubren todas las aplicaciones.

Conductores que no están en contacto, sujetados en su sitio por medio de anillos guía: instalación de la columna 2

Varios circuitos en la misma canalización y todo el cableado en canalizaciones verticales y horizontales: instalación de la columna 1

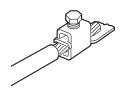
Circulación horizontal "al aire libre", solo están agrupados en canalización los conductores verticales: instalación de la columna 2, como aquí. Si la relación de empaquetado de la canalización vertical es alta: instalación de la columna 1

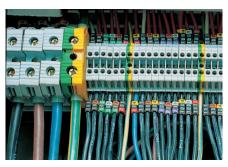
CONEXIÓN DE CONDUCTORES (RECOMENDACIONES DE LEGRAND)

CONDUCTORES CON ALMA DE COBRE RÍGIDA

Con este tipo de conductor, que es, con diferencia, el más utilizado en instalaciones fijas, no es necesario tomar ninguna precaución especial, va que el borne al que se conecta está dimensionado para la sección transversal y la corriente requeridas.

La calidad y durabilidad de las conexiones se asegura mediante el uso de una herramienta Bornas de conexión Viking 3: una solución fiable apropiada y el cumplimiento de las recomendaciones de pares de apriete.


Se deben tomar ciertas precauciones para conectar conductores pequeños en bornas de presión directa.


- No estañe el conductor pelado, ya que podría ocasionar la rotura posterior del conductor
- No apriete en exceso para limitar el riesgo de rotura
- El extremo del conductor se puede volver a plegar para proporcionar un contacto mejor

Los equipos modulares DX3 y bornas Viking 3 tienen bornes de presión indirecta: el conductor se

fija por medio de una placa que distribuye el esfuerzo del apriete y permite el apriete a 0.



para la conexión de conductores flexibles

CONDUCTORES CON ALMA DE COBRE **FLEXIBLES**

Debido a la relativa fragilidad de los filamentos que forman el núcleo, se deben tomar ciertas precauciones para conectar conductores flexibles.

Un apriete excesivo podría cortar los filamentos. Una sección incorrecta ocasiona la dispersión de los filamentos y un contacto deficiente. Para evitar que se suelten las conexiones y el riesgo de dispersión de los filamentos, se recomienda que se vuelva a enrollar sobre sí mismo el núcleo en la dirección inicial, que a menudo es hacia la izquierda

No estañe los conductores flexibles antes de realizar la conexión: si se aplica estaño, es posible que con el tiempo se produzca un fenómeno de desintegración conocido como "corrosión por frotamiento". El riesgo de fallo dieléctrico desaconseja el uso de grasa conductora para contactos en atmósferas húmedas o conductoras. Si las condiciones de operación son difíciles, es preferible instalar punteras, manguitos o terminales.

El riesgo de rotura y dispersión de los filamentos, especialmente inherente a las bornas de presión

directa, se puede evitar con la utilización de punteras Starfix™.

Los productos de la gama Starfix™ (pinzas estándar, pinzas multifunción, y punteras de 0,5 a 25 mm²) aseguran una conexión totalmente fiable de los conductores flexibles

La herramienta Starfix S permite cortar, pelar y engastar con una misma herramienta.

RAMIFICACIÓN DE CONDUCTORES

La conexión simultánea de dos conductores rígidos con la misma sección no suele ser posible aguas arriba. La conexión de dos conductores con tipos de ánima o secciones distintos es muy desaconsejable. La ramificación aguas abajo es posible. En ese caso, la capacidad, tipos de conductor y combinaciones se indican en los propios productos o en la documentación que los acompaña.

CONDUCTORES PE

En los circuitos de protección no está permitida la ramificación o conexión de dos o más conductores en un mismo borne. Tampoco está permitida en los bornes de dispositivos de accionamiento (salvo enchufes, luminarias, unidades de iluminación, etc., siempre y cuando se suministren bornes apropiados).

Para efectuar la ramificación que se requiere debido a la gran cantidad de circuitos, se deben utilizar equipos apropiados y seguros.

Borna adicional para el conductor de neutro en el repartidor ref.. 0 048 86

Reconexión en bornas Viking 3 con peines de puenteo equipotencial separables ref. 0 375 00/01/03/04

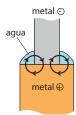
CONDUCTORES CON ALMA DE ALUMINIO

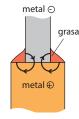
El aluminio es un conductor excelente y ofrece una relación favorable peso/conductancia para secciones grandes. Ampliamente utilizado en sistemas de alimentación, actualmente su uso se está extendiendo al ámbito de la distribución de potencia.

Se requiere una comprensión adecuada de las dificultades específicas asociadas a la conexión de este metal para evitar problemas que a buen seguro se producirán posteriormente:

- El aluminio expuesto al aire libre queda cubierto rápidamente por una capa aislante, fina y de gran dureza llamada alumina. Por lo tanto, se debe conectar inmediatamente después de pelarlo y, si es necesario, después de un tratamiento abrasivo de la superficie.
- Él aluminio se expande mucho más que otros metales de uso común (hierro, cobre, latón, etc.), lo que genera un inevitable aflojamiento de las conexiones. Por lo tanto, los bornes de conexión para aluminio deben estar fabricados en aluminio o una aleación, o estar dotados de dispositivos elásticos (arandelas, bandas) para compensar estas diferencias de expansión.

- El aluminio tiene un potencial electroquímico muy negativo (- 1,67 V), por lo que tiende a sufrir corrosión cuando entra en contacto con muchos otros metales. Este comportamiento de "ánodo protector" se acentúa en entornos húmedos o conductores. Es fundamental evitar el contacto directo entre el aluminio y acero inoxidable, plata o cobre. Sin embargo, metales tales como el zinc, acero y estaño son compatibles con el aluminio.


En todos los casos, se recomienda volver a apretar las conexiones al par correcto después de unos cuantos días.


Si los metales utilizados se eligen correctamente y el entorno es seco, el riesgo de corrosión electrolítica

es bajo.

Este riesgo se incrementa en ambientes húmedos (el agua actúa como un electrolito en la batería que se crea). El uso de grasa neutra (normalmente, a base de silicona) limita la aparición de este fenómeno.

El circuito se cierra: el metal tiene corrosión

El circuito no se cierra: no hay corrosión

Todos los aparatos DPX³, DPX-IS y Vistop permiten realizar conexiones con terminales

bimetálicos de cobre/aluminio, que proporcionan un nivel de fiabilidad muy elevado. Las capacidades recomendadas (sección y taladrado) se especifican en las fichas de datos técnicos y las guías. También es posible conectar conductores de aluminio directamente por medio de bornes de conexión, que están disponibles como accesorios.

Las bornas de conexión referencia 0 374 80/81 se pueden utilizar para realizar conexiones y derivaciones en circuitos de potencia con cables de aluminio.

Conexión de dos conductores de aluminio (185 mm² por polo) a una DPX³ 630 con bornes ref. 0 261 51

Conexión directa de una DPX³ 630 con bornes de estribo, ref. 0.262 50

SECCIÓN EQUIVALENTE DE CONDUCTORES DE ALUMINIO/COBRE

Sección	Sección de aluminio (mm²)					
de cobre (mm²)	A igual calentamiento	A igual caída de tensión				
6	10	10				
10	16	16				
16	25	25 35 50				
25	35					
35	50					
50	70	70				
70	95	95				
95	150	150				
120	185	185				
150	240	240				
185	300	400				

PRECAUCIONES RESPECTO AL CABLEADO

Los componentes del cableado no deben sufrir ningún daño derivado de fuerzas mecánicas o térmicas.

Este daños pueden estar causados por:

- Efectos electrodinámicos producidos por cortocircuitos
- Dilataciones y contracciones causadas por calentamientos
- Efectos magnéticos provocados por el paso de corriente a través de ellos
- Movimiento de piezas móviles del cuadro, etc.

También es importante asegurarse de que se cumplan los puntos siquientes:

- Evitar que los cables entren en contacto con bordes afilados y las piezas móviles del cuadro
- Respetar los radios de curvatura de los cables (los valores proporcionados por los fabricantes de los cables)
- Comprobar que los cables no estén sometidos a tracciones ni torsiones
- Comprobar que las conexiones de los equipos montados en partes móviles del conjunto (puertas, placas frontales pivotantes, etc.) se han realizado con cables flexibles y que estos conductores se mantienen en su sitio mediante dispositivos de fijación distintos de las conexiones eléctricas.

PROTECCIÓN CONTRA LOS EFECTOS DE LOS CORTOCIRCUITOS

Un cortocircuito puede tener dos efectos destructivos:

- Tensiones térmicas, contra las que normalmente se proporciona protección por medio de dispositivos de protección (fusibles, interruptores automáticos)
- Tensiones electrodinámicas, que incluyen las fuerzas entre conductores

Cuando se produce un cortocircuito entre dos conductores bajo tensión (la situación más probable), los conductores a través de los que pasa el cortocircuito tienden a repelerse entre sí con una fuerza proporcional al cuadrado de la corriente. Si no están fijados correctamente, empezarán a dar sacudidas, con el riesgo de soltarse de sus conexiones y entrar en contacto con otro conductor o

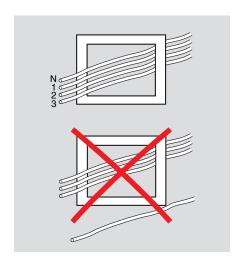
una parte conductora expuesta, provocando otro cortocircuito con un efecto arco muy destructivo.

Los cables multiconductores están diseñados para soportar las fuerzas que pueden ejercerse entre conductores. No obstante, para utilizar cables monoconductores es necesario tomar ciertas precauciones.

La información que se indica en la tabla siguiente, que tiene la finalidad de llamar la atención sobre la importancia de fijar los conductores correctamente, no garantiza por sí sola que se puedan soportar las condiciones de un cortocircuito, que únicamente se pueden simular por medio de ensayos.

Si bien las condiciones de instalación de los juegos de barras se determinan con exactitud de forma sistemática en lo que respecta a cortocircuitos (distancias entre soportes), no suele ser el caso de los conductores del interior de los cuadros. A menudo son el origen de los daños, y este riesgo debería tenerse muy en cuenta.

PRECAUCIONES RESPECTO AL CABLEADO										
Valor del posible cortocircuito (I _k)	Fijación de conductores									
I _k < 10 kA	Sin precauciones específicas (la norma IEC 61439-1 no establece ningún ensayo).									
10 kA < I _k < 25 kA	Los conductores deben fijarse por medio de abrazaderas. Se pueden agrupar en mazos para el mismo circuito.									
25 kA < I _k < 35 kA	Los conductores de un mismo circuito deben mantenerse separados y fijarse de forma individual. Si están agrupados en mazos, se debe incrementar la cantidad de abrazaderas (una cada 50 mm).	, a 11								
35 < I _k < 50 kA	Los conductores de un mismo circuito deben fijarse de forma individual en un soporte rígido (travesaño, perfil) que no tenga bordes afilados. Deben estar separados físicamente. Cada fijación debe estar formada por dos abrazaderas cruzadas.									
I _k > 50 kA	Con estos valores de cortocircuito, las fuerzas alcanzan un nivel tal que los dispositivos de fijación deben tener un diseño especial: por ejemplo, travesaños mecanizados y barras roscadas. En algunos casos extremos se pueden utilizar los perfiles y bridas de acero inoxidable de Legrand.									



PROTECCIÓN CONTRA LOS EFECTOS MAGNÉTICOS

Las corrientes altas que pasan por los conductores causan efectos magnéticos en las partes conductoras metálicas circundantes. Estos efectos pueden provocar un calentamiento inaceptable de los materiales.


Por lo tanto, es esencial tomar ciertas precauciones respecto al cableado. La pérdida de "histéresis" asociada a la saturación de los materiales magnéticos se produce en los marcos creados por los componentes estructurales (estructura, chasis y bastidores de soporte de la envolvente) situados alrededor de los conductores. Para reducir la inducción creada, hay que disponer los conductores de forma que el campo sea lo más débil posible.

Para minimizar la inducción creada en bucles magnéticos, es aconsejable tener siempre todos los conductores bajo tensión de un mismo circuito (fases y neutro) en bastidores del mismo metal (acero). Como la suma vectorial de las corrientes es igual a cero, la de los campos creados también lo es.

Si no es posible hacer pasar todos los conductores del mismo circuito juntos sin la inserción de componentes ferromagnéticos (podría ser el caso de soportes de equipos, placas de entrada de cables, divisores), deben colocarse en soportes fabricados en un material no magnético (aluminio, cobre, acero inoxidable o plástico).


Si bien se recomienda hacerlo a partir de corrientes de 400 A por conductor, resulta esencial por encima de 630 A. En la medida de lo posible, los conductores deben estar dispuestos en tresbolillo para reducir los campos inducidos.

Se deben tomar ciertas precauciones para la inserción y fijación de conductores separados en bandejas de rejilla. Para evitar un calentamiento significativo de los componentes de la bandeja, es aconsejable retirar las piezas que forman marcos alrededor de un conductor.

Para deshacer el marco magnético también se pueden extraer componentes.

En todos los casos, compruebe que la resistencia mecánica del soporte siga siendo aceptable.

La inserción de travesaños de aluminio en los soportes barras de distribución de Legrand evita la creación de marcos magnéticos

Las esquinas de las envolventes XL³ 4000/6300 están diseñadas para evitar la formación de marcos magnéticos en su estructura. Por lo tanto, se pueden utilizar estas envolventes para potencias muy altas sin que se produzcan efectos de inducción magnética descontrolados.

CABLEADO AGUAS ARRIBA DE DISPOSITIVOS DE PROTECCIÓN

Aguas arriba de los dispositivos de protección contra sobreintensidad (sistemas de puesta a tierra del neutro TN y TI) o interruptores diferenciales (sistema TT), la protección contra las consecuencias de un posible fallo (entre fases y una parte conductora metálica) no está asegurada.

Resulta esencial evitar por otros medios el riesgo de un contacto indirecto: en la práctica, la única medida que se puede tomar para compensar esto es el doble aislamiento (clasell). Se puede obtener directamente por medio de equipos o con aislamiento complementario en la instalación.

La implementación de la clase II aguas arriba de los dispositivos de protección se basa en cuatro reglas básicas:

- El uso de conductores o cables dotados de doble aislamiento como resultado de su composición (página 32)
- La provisión de aislamiento complementario alrededor de los conductores que no dispongan de este doble aislamiento (instalación en canalizaciones, conductos o envolventes aislados)
- El uso de componentes aislantes que mantengan los elementos conductores desnudos en su sitio (juegos de barras) con el doble de distancia de aislamiento de lo normal
- Fijación de los conductores de modo que no pueda producirse contacto con una parte conductora expuesta cercana en el caso de que se suelten o desconecten accidentalmente

UBICACIÓN DE LOS COMPONENTES CONDUCTORES RESPECTO A PARTES CONDUCTORAS METÁLICAS EJEMPLO DE TENSIÓN DE AISLAMIENTO DE 500 V

> Conductor de doble aislamiento + conductor de aislamiento principal tipo PR 90°C min. (ver tabla)

Conductor de aislamiento simple

min. 20 mm

o aislamiento

4000 V

Estas disposiciones suponen que las distancias mínimas se mantienen permanentemente, incluso en el caso de que se produzcan fallos (fuerzas electrodinámicas), por medio de la fijación apropiada.

Las distancias de aislamiento se pueden sustituir por componentes aislantes más finos (pantallas, soportes, separadores), dotados de suficiente resistencia mecánica y una resistencia dieléctrica de, al menos, 2500 V o 4000 V.

CABLES QUE SE CONSIDERAN DE DOBLE AISLAMIENTO									
U ₀ : 500 V	U _o : 250 V								
U-1000 R12N	H05 RN-F								
U-1000 R2V	H05 RR-F								
U-1000 RVFV ^[1]	H05 VV-F								
H07 RN-F	H05 VVH2-F								
A07 RN-F	FR-N05 VV5-F								
FR-N1 X1 X2	A05 VVH2-F ^[1]								
FR-N1 X1 G1									
H07 VVH2-F									

[1] En función de las condiciones de uso.

Las barras flexibles tienen una tensión de aislamiento de 1000 V. Se pueden clasificar como conductores con doble aislamiento si se limita la tensión de servicio a $\rm U_0$: 500 V (en ese caso, se considera que el aislamiento es de tipo reforzado) o, preferiblemente, si el aislamiento de las barras (fijaciones, soportes, su propia rigidez) se sujeta mecánicamente en su posición a una distancia apropiada de las piezas metálicas (10 mm).

SELECCIÓN DE CONDUCTORES Y REQUISITOS DE INSTALACIÓN (IEC 61439-1 SECCIÓN 8.6.4) Requisitos Tipo de conductor Conductores desnudos o conductores monoconductores con aislamiento básico, por ejemplo, cables que se ajustana la Debe evitarse el contacto mutuo o con partes conductoras, por ejemplo, mediante el uso de separadores El contacto mutuo o con partes conductoras está permitido si no se aplica presión exterior. Debe evitarse Conductores monoconductores con aislamiento básico y una temperatura máxima de uso permitida de, al el contacto con bordes afilados. menos, 90 °C, por ejemplo, cables que se ajustan a la IEC 60245-3, o cables termoplásticos con aislamiento Estos conductores deben tener una carga tal que la temperatura de funcionamiento no supere el 80 % de la de PVC y resistencia al calor que se ajustan a la IEC 60227-3 temperatura máxima permitida para el uso del conductor Conductores con aislamiento básico, por ejemplo, cables que se ajustan a la IEC 60227-3, con aislamiento secundario complementario, por ejemplo, cables recubiertos individualmente con manguitos retráctiles o tendidos individualmente en conductos de plástico Conductores aislados con un material dotado de una resistencia mecánica muy alta, por ejemplo, aislamiento Sin requisitos adicionales de etileno tetrafluoroetileno (ETFE), o conductores con doble aislamiento con una envoltura externa reforzada para su uso con hasta 3 kV, por ejemplo, cables que se ajustan a la IEC 60502 Cables monoconductores o multiconductores en canalización, por ejemplo, cables que se ajustan a la IEC

60245-4 o a la IEC 60227-4

CABLEADO DE CIRCUITOS PERMANENTEMENTE ALIMENTADOS

Algunos circuitos de medición, señalización o detección deben conectarse aguas arriba del dispositivo principal de protección del conjunto.

Además de la protección contra el contacto indirecto, se deben tomar precauciones especiales con estos circuitos:

- Contra el riesgo de cortocircuitos
- Contra los riesgos asociados al hecho de que permanecen alimentados después de la desconexión del dispositivo principal de protección

Se debe aplicar la especificación de doble aislamiento para limitar el riesgo de contacto con las partes conductoras expuestas, así como tomar medidas para minimizar la probabilidad de que se produzca un cortocircuito. Los conductores de estos circuitos no protegidos se deben conectar de la forma más segura posible. Al crear circuitos no protegidos, se debe tener en cuenta la resistencia mecánica de los conductores:

- Los conductores con aislamiento sencillo (H07 V-U/R o H07 V-K) se deben proteger con una envoltura adicional (por ejemplo, un manguito ref. 366 38) o tenderlos en una canal si hay riesgo de contacto con piezas que podrían causar lesiones
- Los conductores con un alto grado de resistencia mecánica (con aislamiento PTFE) se pueden usar directamente
- Los cables monoconductores o multiconductores se pueden usar sin ninguna envoltura adicional, a menos que existan riesgos tales como la presencia de bordes afilados

En la práctica, la sección de los conductores de circuitos no protegidos, que normalmente se elige en función de la potencia de los circuitos en los que se vayan a usar, no debe ser demasiado pequeña para que cuenten con suficiente resistencia mecánica. Generalmente, se emplea un valor mínimo de 4 mm².

Por supuesto, los dispositivos de protección para circuitos permanentes se deben elegir en función de la corriente del circuito que se vaya a proteger y de la corriente del posible cortocircuito en el extremo de alimentación del conjunto. A menudo, los valores muy elevados propician el uso de bases portafusibles con cartuchos fusibles.

Ejemplo de conexión sobre placa de cobre. Los tornillos tienen arandelas para evitar que se aflojen

Los circuitos no protegidos permanentemente alimentados no tienen un marcado específico (IEC 60364).

No obstante, es aconsejable identificarlos claramente con un mensaje como el siguiente: "Precaución, circuitos permanentes no interrumpidos por el aparato de cabecera", con una posible identificación adicional de los circuitos en cuestión (por ejemplo: "tensión activa", "iluminación de la envolvente", "detección del grupo", etc.).

La norma IEC 60204-1 (seguridad de las

máquinas) recomienda que estos circuitos estén separados físicamente de los demás circuitos identificados con aislamiento naranja en los conductores. Las bornas de color naranja, Viking 3 están diseñadas especialmente para estos circuitos.

LO QUE SE DEBE EVITAR

- Conectar a la cabeza de los tornillos: el taladro puede debilitar hasta los tornillos de mayor diámetro
- Conectar los cables entre los terminales y
- la placa de conexión del aparato: puede que el cable se corte y la superficie de contacto se vea afectada
- · Conectar directamente en la borna del aparato junto con el cable de alimentación, de gran sección: la conexión no está asegurada

Conductores de neutro y conductores de protección

TRATAMIENTO DEL CONDUCTOR DE NEUTRO

REGLAS BÁSICAS

En principio, se considera que el conductor de neutro es un conductor bajo tensión. Por lo tanto, debe estar dimensionado de la misma forma que un conductor de fase, estar protegido contra sobreintensidades y tener la posibilidad de aislarlo.

Hay excepciones a cada uno de estos requisitos, cuyos límites deben conocerse.

DIMENSIONADO

En circuitos trifásicos con una sección "S" superior a 16 mm² (o 25 mm² en el caso de aluminio), la sección del conductor de neutro se puede reducir a S/2.

Si las cargas suministradas no están más o menos equilibradas y la corriente en el neutro es superior al 30 % de la corriente de las fases, o las cargas generan armónicos, se recomienda no reducir la sección del neutro. Si la tasa de armónicos de rango 3 es superior al 33 %, se debe sobredimensionar el conductor de neutro. Se debe calcular la sección del neutro para una corriente que sea 1,45 veces la corriente de empleo en las fases.

SECCIONAMIENTO

Debe ser posible seccionar todos los conductores activos, incluido el neutro, en el origen de la instalación y en el origen de cada circuito principal, a no ser que el neutro realice la función de conductor PEN (véase la página 33).

PROTECCIÓN CONTRA SOBREINTENSIDADES

Cuando la sección del conductor de neutro (sistemas TT o TN) es idéntica a la de los conductores de fase, el polo neutro puede no tener detección de sobreintensidad (polo no protegido).

INTERRUPTORES AUTOMÁTICOS CON AJUSTE DE NEUTRO INDEPENDIENTE

Antes de la puesta en marcha inicial, compruebe la posición de ajuste de la protección de neutro.

TRATAMIENTO DE LOS CONDUCTORES DE PROTECCIÓN

La sección de los conductores de protección de un conjunto a los que se deben conectar conductores externos se puede determinar por medio de dos métodos: con cálculos o sin ellos

DETERMINACIÓN SIN CÁLCULOS

La sección de los conductores se selecciona de modo que se limiten todos los riesgos, con independencia de las condiciones de cortocircuito. Es el método más sencillo y seguro, aunque tiende a sobredimensionar la sección de los conductores de protección. La tabla siguiente contiene los valores que se deben utilizar.

REGLAS BÁSICAS PARA LA DETERMINACIÓ	N
DE LA SECCIÓN (IEC 61439-1)	

DE LA SECCIOI	1 (IEC 01437-1)
Sección de los con- ductores de fase S _{ph} (en mm²)	Sección mínima del conductor de protección S _{PE} correspondiente (en mm²)
S _{ph} < 16	S _{ph}
16 < S _{ph} < 35	16
35 < S _{ph} < 400	S _{ph} /2
400 < S _{ph} < 800	200
S _{ph} < 800	S _{ph} /4

Los conductores PE que no formen parte de una canalización (cable) deben tener una sección mínima de 2,5 mm² si están protegidos mecánicamente (por ejemplo, en el interior de un conducto), y de 4 mm² si no lo están

Las secciones indicadas corresponden a conductores de cobre. Si se utilizan otros metales, hay que aplicar la siguiente regla de equivalencia:

- Aluminio: 1,5 x SPE
- Latón: 2 x SPE
- Acero: 2,8 x SPE
- Plomo: 5,2 x SPE

En los sistemas TN-C, la sección mínima del conductor PEN es de 10 mm² si se usa cobre o 16 mm² en el caso de aluminio.

DETERMINACIÓN CON CÁLCULOS

La sección se determina por medio de un cálculo que establece si los conductores y sus bornes son capaces de soportar los cortocircuitos más elevados. Este método permite optimizar las secciones utilizadas, pero requiere conocer con exactitud el valor de los posibles cortocircuitos y las características de los dispositivos de protección.

Posteriormente, se calcula la sección para tiempos de desconexión inferiores a 5 s por medio de la fórmula siguiente:

$$S_{PE} = \frac{\sqrt{I^2 t}}{K}$$

SPE: sección del conductor de protección (en mm²)

I: valor rms de la corriente de fallo (si está en A)

t: tiempo de desconexión del dispositivo de corte (en s)

K:coeficiente que depende de la stemperaturas admisibles, el metal utilizado y el aislamiento, cuyos valores se indican en la tabla siguiente.

CONTINUIDAD Y DURABILIDAD DE LOS CONDUCTORES DE PROTECCIÓN

Los conductor de protección se deben proteger contra daños mecánicos y químicos y contra fuerzas electrodinámicas.

Aparte de las conexiones que únicamente se pueden desmontar con herramientas, no se debe insertar ningún equipo en los conductores de protección, lo que incluye el bobinado de cualquier equipo de comprobación de la continuidad.

A no ser que se utilicen como conductores de protección, las masas no se deben conectar en serie.

La desconexión de un circuito no debe provocar la desconexión de otros, lo que significa que los conductores de protección deben ser únicos e independientes. Estas conexiones deben mantenerse accesibles para su comprobación y medición. Si la protección contra contactos indirectos se realiza por medio de dispositivos de protección contra sobreintensidad (sistemas TI y TN), los conductores de protección deben estar situados en el mismo sistema de cableado o muy próximos a los conductores activos.

	VAI	_OR DE	E K PAR	A CON	IDUCT	ORES B	AJO TE	ENSIÓ	N Y C01	NDUCT	ORES	DE PRO	TECCI	ÓN				
Aislamiento PVC			PR/EPR			Goma 60 °C		Goma 85 °C			Goma de silicona			Sin aislamiento				
θ° máx. (°C)	1	60/140)[2]		250 200 220 350					200/150[1]								
Tipo de elemento conductor	Cu	Al	Acero	Cu	Al	Acero	Cu	Al	Acero	Cu	Al	Acero	Cu	Al	Acero	Cu	Al	Acero
Conductor de protección no incorporado en un cable o conductores no agrupados	143 133 ^[2]	95 88 ^[2]	52 49 ^[2]	176	116	64	159	105	58	166	110	60	201	133	73	159 138 ⁽¹⁾	105 91 ⁽¹⁾	58 50 ⁽¹⁾
Conductor activo o conductor de protección que forma parte de un cable multiconductor o conductores agrupados	115 103 ^[2]	76 68 ^[2]		143	94		141	93		134	89		132	87		138	91	50

⁽¹⁾ Si existe un riesgo particular de incendio

⁽²⁾ La sección transversal es superior a 300 mm² o los conductores están agrupados

La tabla que se muestra a continuación contiene las secciones que se suelen utilizar para los conductores PE (con fines meramente informativos). En función de las condiciones, puede que estos valores sean distintos en la instalación.

SECCIONES DE CONDUCTORES

N HABITUALES S EN FUNCIÓN RRIENTE					
S _{PE} (mm²)					
1,5					
2,5					
4					
4					
6					
10					
16					
16					
16					
25					
35					
50					
70					
95					
120					
150					
185					
240					
185 ^[1] o 2 x 150 ^[2]					
240 ^[1] o 2 x 165 ^[2]					

(1) Valores de SPh/4 con arreglo a la tabla 11 de la IFC.61439-1

240^[1] o 2 x 240^[2]

S_{DE}/4

(2) Valores de SPh/2 con arreglo a la IEC 60364

1600

> 1600

BORNA PRINCIPAL DEL CONDUCTOR DE PROTECCIÓN

En función de la potencia de la instalación, este borne puede adoptar la forma de un bornero, una regleta de conexión, un perfil con bornas de conexión o una barra de cobre. A menudo se hace referencia a él como borna de conductores de protección.

Se conectan a este borne los elementos siguientes:

- El conductor de protección principal
- Opcionalmente, el conductor de protección del transformador
- Los conductores de protección de los circuitos con carga
- Las conexiones equipotenciales

Como en el caso de los conductores de protección, las características de este borne se deben determinar cuidadosamente. Si hay un número elevado de circuitos de protección conectados, puede resultar necesario utilizar dos (o más) barras de conexión básicas. Es aconsejable conectar entre sí estas barras por medio de un elemento conductor que no se pueda extraer de forma inadvertida, en vez de usar un conductor verde/amarillo.

Borna principal formada por una barra de cobre en la parte inferior de la envolvente

SOLUCIONES DE CONEXIÓN PRÁCTICAS

→ Véanse los cuadernos de montaje

				SOLU	CIONES PARA TODAS LAS POTENCIAS '	Y TODOS LOS CUADROS		
Ti	máxin			Corriente máxima del conjunto	Borna o conector de conductores de protección	Componente térmica I ² t ^[1]	Sección del conductor de protección principal de cobre S _{PE} ^[2]	
				(A)		(A ² s)	(mm²)	
				80	Bloques de terminales de distribución en barra plana de 12 x 2 ⁽⁴⁾	0 048 19 0 048 01/03/04/30/32/34	0,9 x 10 ⁷	16
	XL ³ 800			00	Bornas Viking sobre perfil DIN ^[4]	0 200 00/02 0 371 72/74	0,9 x 10	16
			XL ³ 160	100	Bloques de terminales de 0 048 19 100 distribución en barra plana 0 048 01/03/05/06/07 de 12 x 2 ^[4] 0 048 01/03/05/06/06 160 Barra de latón ^[4] 0 373 01		1,2 x 10 ⁷	16
				160			2 x 10 ⁷	25
		XL ³ 400		160	Barra de cobre 12 x 4 perforada + conectores [4]	0 373 89 0 373 65	4,7 x 10 ⁷	35
XL ³ 4000				100	Bornas Viking sobre perfil DIN [4]	0 200 00/02 0 371 72/73/74/75/79	3,2 x 10 ⁷	35
				200	barra de cobre de 12 x 4 + bornes (4)	0 373 49/373 02 0 373 60/61/62	5,8 x 10 ⁷	50
				250	barra de cobre de 15 x 4	0 374 33	9,1 x 10 ⁷	70
				315	barra de cobre de 18 x 4	0 374 34	1,3 x 10 ⁸	95
				400	barra de cobre de 24 x 4	0 374 38	2,5 x 10 ⁸	120
				500	barra de cobre de 25 x 5	0 374 18	3,9 x 10 ⁸	150
				630	barra de cobre de 32 x 5	6,5 x 10 ⁸	185	
				800	barra de cobre de 50 x 5	0 374 40	2,5 x 10 ⁹	240
				1000	barra de cobre de 63 x 5 ⁽⁵⁾	0 374 41	2,5 x 10 ⁹	2 x 150 o 300
	1:			1250	barra de cobre de 80 x 5 ⁽⁵⁾	0 374 43	4,1 x 10 ⁹	2 x 185
				1600	barra de cobre de 100 x 5 ^[5]	0 374 46	6,9 x 10 ⁹	2 x 240

^[1] Los bornes o conectores de conductores de protección están dimensionados para la misma resistencia térmica a cortocircuitos que la del conductor de protección principal.

⁽²⁾ En los sistemas TT, la sección del conductor de protección principal se puede limitar a 25 mm² si las conexiones a tierra del neutro y las partes conductoras expuestas están separadas.

⁽³⁾ Los armarios XL³ 160 están equipados con una barra de latón. (4) Se pueden utilizar en conjuntos de doble aislamiento (clase II).

⁽⁵⁾ De conformidad con la norma IEC 60439-1, se puede limitar la sección transversal de la barra a 50 x 5 (S/4).

USO DE LAS MASAS COMO CONDUCTORES DE PROTECCIÓN

Las masas (o partes conductoras expuestas) formadas por el chasis de los armarios y envolventes XL³ se pueden utilizar como conductores de protección, ya que las fijaciones de los diversos componentes proporcionan automáticamente una interconexión equipotencial que se ajusta a las disposiciones de la norma IEC 61439-1, sección 7.4.3.1 y la norma IEC 60364-5-54, sección 542.2.

No obstante, es aconsejable limitar la función de conductor de protección únicamente a los montantes del chasis y prestar especial atención al riesgo de interrupción del circuito de protección mediante el desmontaje mecánico.

Cuando se usan los montantes como conductores de protección, la sección del conductor de protección equivalente es:

- 50 mm² para XL³ 160, XL³ 400 y XL³ 800
- 70 mm² para envolventes XL³ 4000

Componente térmica admisible para los montantes:

Armarios envolventes: XL3 160, XL3 400 y XL3 800: 1,1 x 108 A²s

- Envolventes XL3 4000: 1,4 x 108 A2s

PERFILES DE FIJACIÓN

Los perfiles de fijación de los aparatos de tipo 2 también se pueden utilizar como conectores de circuitos de protección, siempre que las conexiones se realicen con bornas de Legrand diseñadas específicamente para esta finalidad: ref. 0 371 72/73/74/75/79.

La sección eléctrica equivalente de las masas formadas por los armarios y envolventes XL3 les

permite ser utilizados para la conexión equipotencial y la conexión de las puestas a tierra de los dispositivos de protección contra sobretensiones. Para evitar cualquier posible ambigüedad, no utilice simultáneamente las masas con fines de protección (conductor PE) y con fines funcionales (dispositivos de protección contra sobretensiones). El uso como PEN de las masas está prohibido.

CONJUNTO **PROTEGIDO MEDIANTE** AISLAMIENTO TOTAL

En un conjunto que se ajusta a la IEC 61439-1, sección 8.4.4, protección por aislamiento total, se considera que los conductores de protección son consideradas partes activas v las partes metálicas no se deben conectar a estos conductores de protección. Por lo tanto, la borna principal del conductor de protección debe estar aislada. Por ello, se han previsto medidas apropiadas para su montaje en las envolventes XL3.

Los plots aislantes de los XL3 160 admiten barras de latón o barras planas para bornas

CABLEADO DE UN CONJUNTO **DE CLASE II**

→ Véase la página 20

TRATAMIENTO DEL CONDUCTOR PEN

El uso del mismo conductor para las funciones de neutro (N) y de conductor de protección (PE) proporciona una optimización económica de la instalación, especialmente mediante el uso de equipos tripolares.

REQUISITOS NORMATIVOS

El uso de un conductor PEN está sometido a requisitos normativos específicos.

- · La función de protección es crucial, y el conductor PEN se debe marcar con la combinación de colores verde/ amarillo (o, en su defecto, mediante marcadores de cableado en espiral). Es aconsejable señalizarlo con la marca
- El conductor PEN no se debe aislar ni cortar, y no se puede insertar ningún aparato en el circuito de protección.
- La sección mínima del conductor PEN es de 10 mm² si se usa cobre o 16 mm² en el caso de aluminio

Se deben tomar ciertas precauciones específicas para usar el conductor PEN:

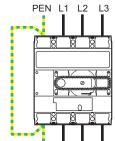
- Se debe evitar todo riesgo de desconexión del conductor PEN. Por lo tanto, es aconsejable que su sección no sea inferior a la de los conductores de fase
- El conductor PEN debe estar aislado para la tensión nominal respecto a la puesta a tierra. Este aislamiento no es obligatorio en el interior de los conjuntos, y la barra conectora PEN se puede montar directamente en la estructura, pero las masas metálicas (estructuras, bandejas de cables, etc.) no se deben utilizar como conductores PEN
- La barra PEN se puede instalar cerca de las barras de fases sin interposición de componentes ferromagnéticos (estructuras, travesaños, etc.)
- Se deben proveer dispositivos de conexión independientes para el conductor de neutro y el conductor de protección

Normalmente, los soportes de los embarrados de 4 polos se pueden utilizar para la distribución con un sistema TN-C en el interior de un conjunto. La ausencia de la barra o barras de neutro no afecta a las características de estos soportes.

Se pueden utilizar en montajes de 4 polos. La barra PEN está aislada y correctamente instalada cerca de las barras de fases. Es, entonces, posible reducir su sección a S/2, por ejemplo, utilizando una barra en vez de dos, siempre y cuando se cumplan las condiciones para la sección mínima requeridas para las funciones de neutro y de conductor de protección.

Es aconsejable colocar la barra (PE, N o PEN) hacia la parte accesible de los conjuntos para:

- Reducir el riesgo de descargas eléctricas
- Identificar el sistema de puesta a tierra del neutro
- Reducir el campo magnético que se emite hacia los equipos de medición

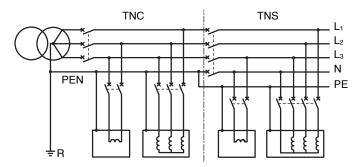

MEDICIÓN DEL AISLAMIENTO Y CONDUCTOR PEN

La regla relativa al no seccionamiento del conductor PEN puede resultar poco práctica para la medición del aislamiento, en particular el de un transformador de alta tensión / baja tensión. De hecho, el corte del conductor de tierra no aísla por completo el bobinado, que sigue estando conectado al conductor PEN, que está conectado a tierra a través de los conductores de protección o las conexiones equipotenciales de la instalación. Por lo tanto, es necesario aislar el conductor PEN durante un breve periodo de tiempo. Hay dos posibilidades, siendo preferible la segunda.

1 - Colocar una elemento de corte o una borna desconectable en el conductor PEN en un punto cercano al seccionador de cabecera. Solo debería ser posible extraerlo con ayuda de una herramienta, y debe colocarse una nota de advertencia que indique lo siguiente: "Precaución, sistema TN-C. Está prohibido interrumpir este PEN

2 - Instalar un aparato seccionador de 4 polos (o, mejor aún, 3P + N decalado). El polo del conductor PEN se puenteará con un conductor verde/amarillo con la misma sección. Este conductor se desconecta para realizar mediciones tras el seccionamiento. La ventaja de esta solución es que la continuidad del PEN está físicamente enlazada al restablecimiento de la alimentación.

salvo para la realización de mediciones sin tensión".

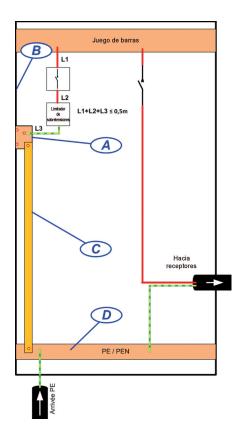

COEXISTENCIA DE TN-C Y TN-S

Si estos dos sistemas coexisten en la misma instalación, el sistema TN-C debe utilizarse aguas arriba del sistema TN-S. No se pueden emplear interruptores diferenciales en los sistemas TN-C.

Si se utilizan interruptores diferenciales para proteger líneas de salida que alimentan a los cuadros de distribución secundarios, el conductor PEN no debe utilizarse aguas abajo de estos equipos y el conductor PE de estos circuitos debe conectarse aguas arriba de estos equipos.

El conductor de neutro y el conductor de protección no deben estar conectados aguas abajo de su punto de separación. En este punto de separación, cada conductor debe estar conectado separadamente (terminales, borne, etc.).

Como regla general, los circuitos finales se crean con el sistema TN-S (conductor de neutro y PE separados). Si se crean con el sistema TN-C (con arreglo a las secciones de cable requeridas) y hay bornes de conexión separados para el neutro y el conductor de protección, tienen que estar conectados juntos en el conductor PEN.

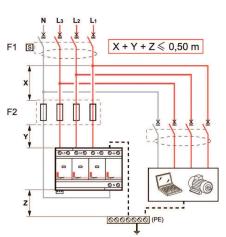


INSTALACIÓN DE UN DISPOSITIVO DE PROTECCIÓN CONTRA SOBRETENSIONES TRANSITORIAS EN UN ARMARIO O CAJA CON ESTRUCTURA METÁLICA

Las conexiones L1, L2 y L3 deben ser lo más cortas posibles (preferiblemente, no más de 0,5 m en total; véanse las normas más abajo).

• Se debe fijar una placa conductora adicional a la estructura metálica de la envolvente XL3, lo más cerca posible del dispositivo de protección contra sobretensiones.

- El punto de conexión eléctrica entre la conexión L3 y la placa conductora 🕲 no debe ser el mismo que el punto de fijación mecánica de la placa 🕲 en la estructura metálica 🗓 de la XL³.
- Se puede agregar una conexión adicional © entre la placa conductora ⓐ y la barra de puesta a tierra principal ②. Esta conexión adicional está recomendada para ajustarse a ciertas prácticas de instalación locales. En este caso, la sección de la conexión ② debe ser, al menos, la misma que la de la conexión L3. Se puede crear con una barra de cobre (recomendado) o un cable.

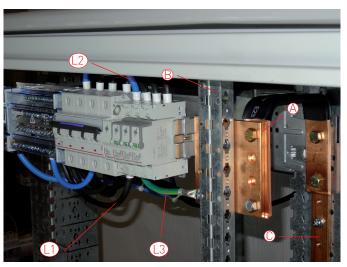


CÓMO APLICA LEGRAND LAS NORMAS

IEC 60364

Sección 534.1.3.4: Para proporcionar una protección contra sobretensiones óptima, los conductores conectados al dispositivo de protección contra sobretensiones deben ser lo más cortos que sea posible.

Las recomendaciones de montaje para los dispositivos de protección contra sobretensiones de Legrand definen una longitud total de X+Y+Z ≤ 0,5 m. Dichas recomendaciones están disponibles en los manuales de instalación.



Ejemplo de construcción de una envolvente XL³ con la alimentación por la parte inferior para la protección asociada al dispositivo de protección contra sobretensiones.

Es aconsejable colocar información adicional de identificación de la alimentación en el producto y en la placa frontal (véase la página 36).

Conexión de la puesta a tierra con una placa conductora adicional (A), fijada a la estructura metálica de la envolvente $\rm XL^3$.

Otro ejemplo de creación de las conexiones L1, L2 y L3.

El cableado de los aparatos

ENTRADAS DE CONDUCTORES

Por motivos prácticos de tendido de los conductores, cada vez es más frecuente conectar los cables de llegada en los bornes superiores o inferiores de los equipos, según convenga.

Para ello hay que tomar dos precauciones:

- El equipo que se vaya a conectar debe elegirse en consonancia (alimentación reversible)
- Se deben identificar los bornes de alimentación, especialmente si los cables están conectados a los bornes inferiores

Los equipos DPX³ pueden ser alimentados a través de los bornes superiores o inferiores, incluso si están dotados de módulos de derivación a tierra. Pueden funcionar en posición vertical u horizontal.

Puede que exista una dirección preferente para la alimentación de los equipos de acuerdo con las prácticas nacionales o del mercado. Si la utilizada en la instalación es distinta, es aconsejable colocar información adicional de identificación de la alimentación en el producto y en la placa frontal.

Ejemplos de información:

PRECAUCIÓN: alimentación a través de los bornes inferiores

o marcas tales como:

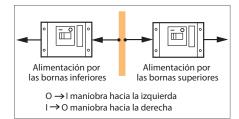
nes de salida Bornes de entrada

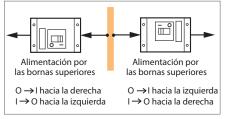
POSICIÓN DE LOS APARATOS

Para evitar accidentes, el sentido común aconseja que la dirección de abertura y cierre de los equipos sea la misma en toda la instalación y, en especial, en un mismo conjunto (por ejemplo, de izquierda a derecha, de abajo arriba) de acuerdo con las posiciones de los equipos. Por lo tanto, debe prestarse una atención especial a los aparatos que se instalen en horizontal.

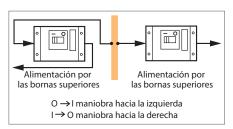
La norma IEC 60447, a la que se hace referencia en la IEC 61439-1, señala que queda prohibido cualquier "efecto espejo" (por ejemplo, inversión de la dirección de abertura de dos equipos).

Todos los DPX³ instalados en horizontal se pueden colocar de ambas formas: 0 —> I hacia la procha o hacia la izquierda. Para lograr la

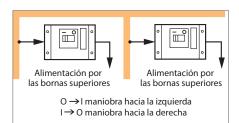

derecha o hacia la izquierda. Para lograr la simetría basta con dar la vuelta al equipo.


Diferentes configuraciones de alimentación con aparatos instalados en horizontal

Configuración recomendada si los bornes de alimentación están marcados



Configuración permitida si los bornes de alimentación están marcados



Configuración no recomendada: equipos alimentados a través de los bornes superiores, pero con las direcciones de funcionamiento invertidas

Configuración recomendada si hay algún requisito sobre la dirección de la alimentación

Configuración recomendada para facilitar el tendido de barras y cables (celda para barras a la izquierda, celda para cables a la derecha)

MARCADO DEL POLO NEUTRO

No hay una posición estándar para el polo neutro. Puede variar en función de las prácticas locales. El conductor de neutro se debe marcar de color azul claro. Si no hay conductores de este color disponibles (cables industriales), es aconsejable colocar manguitos de color en los extremos, cerca de los bornes.

Los DPX³ se suministran con el neutro marcado en el polo de la izquierda

CABLEADO DE LOS TOROIDES

Para realizar el cableado de los toroides para los interruptores diferenciales hay que tomar ciertas precauciones específicas:

- Limitar todo lo posible la longitud de los cables de conexión entre el toroide y el relé
- Colocar los cables en el centro del toroide y, preferiblemente, el conductor de neutro en el centro de los conductores de fase
- Dejar un ángulo de 90° entre los cables y los toroides
- Si es necesario, utilizar cable apantallado
- Para corrientes muy altas, la medida debería tomarse preferiblemente en la conexión entre el neutro del transformador y la puesta a tierra, en lugar de en las fases
- Si es necesario, añadir un manguito no magnético que tenga una altura de, al menos, el doble del Ø del toroide
- Comprobar que la información marcada en los toroides siga siendo visible al finalizar la instalación.
- Si los toroides están colocadas en un embarrado, además de las recomendaciones anteriores, es aconsejable:
- Colocar los toroides en filas escalonadas para evitar tener que reducir las distancias de aislamiento
- Colocar separadores entre las barras de la misma fase, cuando el embarrado tengan varias barras por fase

Separaciones en el interior de un conjunto

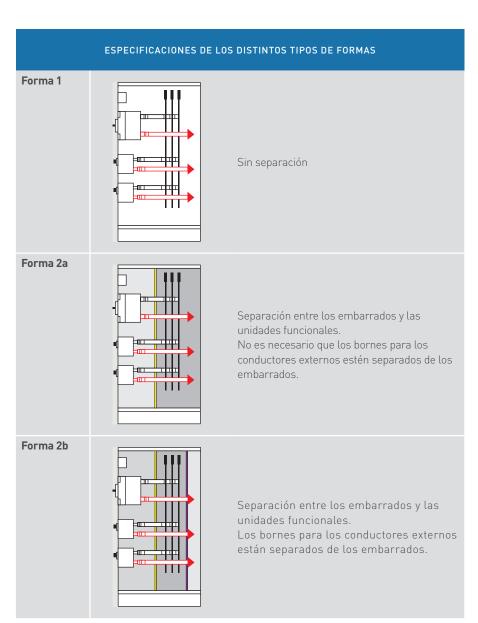
La norma IEC 61439-2 define las separaciones del interior de un conjunto en función de cuatro tipos de formas, cada una dividida a su vez en dos grupos, "a" y "b". Estas separaciones internas se crean con barreras o pantallas hechas de metal o un material aislante.

Su finalidad es dividir el cuadro en áreas cerradas protegidas para proporcionar:

- Protección contra el contacto directo con partes peligrosas de las unidades funcionales de alrededor. El grado de protección debe ser, al menos, IP XXB.
- Protección contra la entrada de cuerpos sólidos. El grado de protección debe ser, al menos, IP 2X (que comprende el IP XXB).

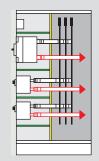
El propósito principal es mantener la disponibilidad de la alimentación en el caso de un fallo o si se están realizando trabajos en el cuadro.

Las separaciones también limitan la propagación de un arco eléctrico y el riesgo de descarga disruptiva.

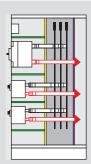

No obstante, limitan la ventilación natural del cuadro y, de esta forma, pueden provocar calentamientos. Por lo tanto, es aconsejable comprobar el balance térmico. Inevitablemente, las separaciones aumentarán el tamaño del cuadro y su coste, tanto en términos de mano de obra como de componentes.

Con el sistema XL3 4000/6300 se pueden crear todos los tipos de formas con los componentes que hay disponibles en el catálogo.

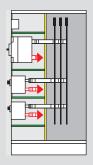
FORMAS


→ Véanse el cuaderno de montaje para las Formas

ESPECIFICACIONES DE LOS DISTINTOS TIPOS DE FORMAS (CONTINUACIÓN)

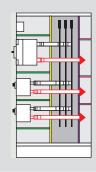

Forma 3a

Separación entre los embarrados y las unidades funcionales y separación entre sí de todas las unidades funcionales.

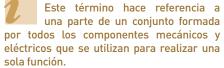

No es necesario que los bornes para los conductores externos estén separados de los embarrados.

Forma 3b

Separación entre los embarrados y las unidades funcionales y separación entre sí de todas las unidades funcionales.
Separación entre los bornes para los conductores externos y las unidades funcionales, pero sin separación entre bornes.


Forma 4a

Separación entre los embarrados y las unidades funcionales y separación entre sí de todas las unidades funcionales, incluidos los bornes para los conductores externos que forman parte integral de la unidad funcional.


Los bornes para los conductores externos están en el mismo compartimento que la unidad funcional.

Forma 4b

Separación entre los embarrados y las unidades funcionales y separación entre sí de todas las unidades funcionales, incluidos los bornes para los conductores externos. Los bornes para los conductores externos no están en el mismo compartimento que la unidad funcional, sino en compartimentos individuales separados.

UNIDAD FUNCIONAL

En el caso de los cuadros de distribución, una unidad funcional está formada casi exclusivamente por el dispositivo de protección y los elementos auxiliares, con excepción de los sistemas llamados "de cajones".

++

DISTRIBUCIÓN IS (SEGURIDAD INCREMENTADA)

Si se requiere poder realizar trabajos de mantenimiento o ampliaciones en el cuadro sin desconectar la alimentación de todo el conjunto, el sistema de distribución HX3/VX3 IS resulta particularmente apropiado y puede ser una buena opción para reemplazar formas de separación.

Bases extraíbles

+
protección de las barras
+
cubiertas de bornes
=
seguridad de trabajo

Bases extraíbles vacías

ampliaciones seguras

No es necesario añadir particiones entre las unidades funcionales para las formas 3a, 3b, 4a y 4b.

El grado de protección IP 2X de los equipos DPX³ comprende el IP XXB. La separación se puede obtener mediante el aislamiento de las partes bajo tensión o la colocación del equipo en cuestión en el interior de una unidad integrada, por ejemplo, un interruptor automático de caja moldeada que se ajuste a la IEC 61439-2, sección 8.101.

Pulsadores e indicadores

Los colores y parpadeos son métodos visibles y eficaces de atraer la atención. Deben usarse para aplicaciones que se hayan determinado con claridad y no debe existir ninguna ambigüedad.

La norma IEC 60073 define los colores que se deben utilizar para los pulsadores e indicadores.

Es aconsejable limitar la cantidad de colores utilizados a lo que sea estrictamente necesario.

Los principales colores utilizados son el rojo, amarillo, verde, azul, blanco, gris y negro.

El significado de los colores debe asignarse por orden de prioridad en relación con los criterios siguientes:

- Seguridad de las personas y bienes
- Situación de un proceso
- Estado del equipo

SIGNIFICADO DE LOS COLORES

Rojo = peligro

Amarillo = precaución, advertencia o situación anómala

Verde = funcionamiento normal o seguro Azul = obligación

Blanco, gris o negro = indicación, información

Gama Osmoz: una amplia variedad de pulsadores e indicadores

INDICADORES Y PULSADORES	SEGURIDAD	PROCESO	ESTAD0		
Rojo	Peligro	Emergencia	Fallo		
Amarillo	Precaución	Situación anómala	Anómalo		
Verde	Seguro	Normal	Normal		
Azul	Acción obligatoria				
Blanco, gris, negro	Indicación, información				

Grados de protección IP

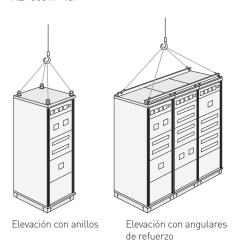
El grado de protección (IP) define la capacidad para proteger a las personas y evitar la entrada de cuerpos sólidos y el contacto directo (primer número) y la entrada de líquidos (segundo número). La letra adicional indica la protección contra el acceso a las partes peligrosas. Con la gama XL³, Legrand proporciona una respuesta ideal, adecuada para cualquier entorno. Desde el armario XL³

160 de IP 30 a la envolvente de distribución industrial XL³ 4000/6300, todos los niveles de protección son posibles. Estos niveles de IP se mantienen para las envolventes asociadas con accesorios de Legrand.

GRADOS DE PROTECCIÓN IP DE CONFORMIDAD CON LAS NORMAS IEC 60529 Y EN 60529

Primer número:		Letr	Letra adicional IP XX		pro	Segundo número: protección contra líquidos								
prote	ección contra la ent	rada de cuerpos	(ABC	D): protección conti	a el contacto directo tensión peligrosas	IP	IP ensayos							
Sotio	105		por	acceso a partes bajo	tension petigrosas	0		Sin protección						
IP	ensayos		IP	ensayos	protección	_		Protección contra gotas de agua que						
0		Sin protección		Ø 50 mm		1		caen verticalmente (condensación)						
1	Ø 50 mm	Protección contra cuerpos sólidos de tamaño superior a 50 mm	A	4	Se mantiene el dorso de la mano alejado de partes peligrosas	2		Protección contra gotas de agua que caen con hasta 15º respecto a la vertical						
	``'			12 mm []		3		Protección contra agua de lluvia que cae con hasta 60° respecto a la vertical						
2	Ø 12,5 mm	Protección contra cuerpos sólidos de tamaño superior a 12,5 mm	В	4	Si se introduce un dedo, no puede entrar en contacto con partes peligrosas	4		Protección contra agua rociada desde todas las direcciones						
	Ø 2,5 mm	Protección contra cuerpos sólidos de tamaño			Si se introduce una herramienta (por ejemplo,	5		Protección contra chorros de agua desde todas las direcciones						
3		superior a 2,5 mm	c T		1	4	7	4		7	un destornillador), no puede entrar en contacto con partes peligrosas	6		Protección total contra chorros de agua de fuerza similar a mar gruesa
4	Ø 1 mm	Protección contra cuerpos sólidos de tamaño superior a 1 mm				7	15 cm mini	Protección contra los efectos de la inmersión						
5		Protección contra polvo (no se forman depósitos nocivos)	D		Si se introduce un cable, no puede entrar en contacto con partes peligrosas	8	E	Protección contra los efectos de la inmersión prolongada en condiciones especificadas						
6		Protección total contra el polvo				9		Protección contra chorros de agua a alta presión y alta temperatura						

Manipulación de conjuntos

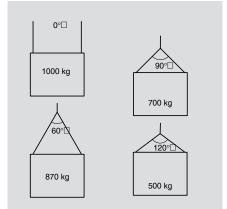

ELEVACIÓN DE CONJUNTOS

Las recomendaciones y precauciones de seguridad para la elevación de conjuntos por medio de eslingas se ofrecen con fines meramente informativos, ya que dependen de la habilidad del transportador o el gruista del puente grúa o la grúa giratoria.

ACCESORIOS DE ELEVACIÓN

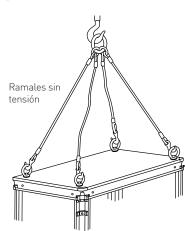
Los anillos de elevación XL³ se pueden utilizar para mover unidades que tengan una anchura inferior a 2 m.

Si el conjunto tiene más de 2 m de anchura o la carga es especialmente pesada, deben usarse angulares de refuerzo. Este método es aplicable a envolventes XL³ 4000/6300 y XL³ 800 IP 55, pero no a las envolventes XL³ 800 IP 43.



No se recomienda en ningún caso el uso de eslingas o correas sin fin para enganchar los anillos.

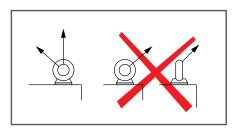
ELECCIÓN DE LAS ESLINGAS


La elección de las eslingas apropiadas en función del peso que se vaya a mover y el equipo de elevación disponible es responsabilidad de quien tenga que transportar el conjunto.

- Realice una estimación al alza del peso que se va a mover. Si no se tienen datos precisos, se pueden utilizar como referencia los valores de carga permitidos.
- Determine la capacidad de las eslingas requerida. La carga de trabajo segura, que debe constar en la eslinga, debe ser adecuada para la elevación que se va a llevar a cabo.
- La carga de trabajo segura mínima de las eslingas está indicada en los diagramas de elevación que se incluyen en los manuales de las envolventes (valor para una sola eslinga o para el ramal de una eslinga múltiple).
- A la hora de comprobar la carga izable, tenga en cuenta el factor del modo de izado M, que depende del ángulo y de la cantidad de ramales.

Ángulo entre los ramales de la carga izable

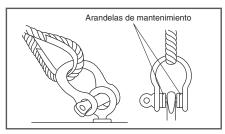
A menudo, la carga que se debe elevar no está equilibrada. Los ramales no tienen una carga uniforme y sus longitudes no son idénticas. Esto genera una reducción de la carga izable.

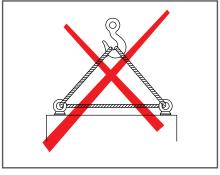


Se recomienda que el ángulo entre los ramales esté limitado a 90° y no supere nunca 120°, ya que con estos ángulos los puntos de sujeción están sometidos a fuerzas laterales significativas y la carga que se puede izar se reduce considerablemente.



DISPOSICIÓN DE LOS ANILLOS, ESLINGAS Y GANCHOS

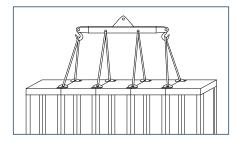

Apriete los equipos con arreglo a los pares de apriete máximos recomendados


Gire los anillos para que estén correctamente alineadas con las eslingas. Si es necesario, aflójelas para ajustarlas. Las fuerzas laterales que se ejercen en los anillos colocados incorrectamente pueden causar su rotura.

Coloque los ganchos de modo que las espigas estén orientadas hacia arriba.

- Use dispositivos para evitar un desenganche accidental: ganchos con pasadores o gatillos de seguridad (la inserción de arandelas mantiene los pasadores centrados).

- Está estrictamente prohibido hacer pasar una eslinga sin fin por dos anillos, ya que las fuerzas ejercidas en los anillos y en la eslinga podrían superar sus capacidades.


ELEVACIÓN DE CARGAS LARGAS

Para la elevación de conjuntos muy largos puede ser necesario tomar precauciones específicas para equilibrar la carga y limitar la oscilación.

• Uso de una eslinga de equilibrado Este tipo de práctica requiere buenos conocimientos sobre la distribución de la carga. En caso de duda, utilice un balancín de carga.

• Uso de un balancín de carga

Ajuste una disposición en "trapecio" para limitar la oscilación. No utilice eslingas planas.

MANIPULACIÓN CON CARRO Y CARRETILLA ELEVADORA

Se puede utilizar una transpaleta, un carro o una carretilla elevadora para manipular los conjuntos que estén fijados a un palé sin riesgo de que se produzcan daños.

Las envolventes XL³ se pueden seguir manipulando una vez retirados los palés.

Las bases de las envolventes son lo suficientemente resistentes para soportar las palas de una carretilla elevadora, incluso si están equipadas con accesorios de cableado. Es necesario retirar las trampillas extraíbles de los zócalos antes de izarlas.

INSTALACIÓN DE RUEDAS EN ENVOLVENTES

Todas las envolventes XL³ pueden deslizarse por el suelo con ruedas, con independencia de si están equipadas con zócalos. Los bordes exteriores de la base están reforzados para crear una superficie de rodamiento continua.

El dosier técnico debe contener información detallada sobre este punto para asegurarse de que el conjunto acabado se manipule correctamente antes de la instalación final.

CERTIFICACIÓN DE CONJUNTOS

Norma IEC 61439-1 y 2

La certificación de conjuntos de distribución de baja tensión está definida en las normas internacionales IEC 61439-1, IEC 61439-2 e IEC 61439-3

CAMBIOS RESPECTO A LAS NORMAS IEC 60439

El conjunto de normas IEC 61439 se ha publicado con el objetivo de sustituir por completo al conjunto de normas IEC 60439. Se han introducido los siguientes cambios técnicos:


- Se ha abandonado la doble función de la IEC 60439-1, como norma de productos por sí misma y como norma que establecía las reglas generales para los conjuntos cubierta por una parte subsidiaria de productos del conjunto de normas IEC 60439. Como resultado de ello, la IEC 61439-1 constituye únicamente una norma de "reglas generales" a la que deben hacer referencia las partes subsidiarias de productos del conjunto de normas IEC 61439.
- La norma de productos que sustituye a la IEC 60439-1 es la IEC 61439-2.
- La distinción entre conjuntos de serie (SA) y conjuntos derivados de serie (ADS) se ha sustituido por el enfoque de la verificación.

- Se han introducido tres tipos de verificación de requisitos que, si bien son distintos, son equivalentes: verificación mediante ensayos, verificación mediante cálculos/mediciones y verificación mediante el cumplimiento de las reglas de diseño.
- Se han aclarado los requisitos relativos al calentamiento.
- El factor de simultaneidad asignado (RFD) se trata en profundidad.
- Se han introducido requisitos para envolventes vacías para conjuntos (IEC 62208).
- La estructura de la norma en su conjunto se ha adaptado a su nueva función de norma de "reglas generales".

A diferencia de la IEC 60439-1, no se puede establecer la conformidad meramente en función de las reglas generales (IEC 61439-1). Los conjuntos deben cumplir las normas específicas que les sean aplicables; en este caso, las normas IEC 61439-2, IEC 61439-3, etc.

El presente documento únicamente cubre la certificación de armarios y envolventes de potencia diseñados para ser utilizados por personal autorizado, es decir, las partes 1 y 2 de la nueva norma

IEC 60439 I CONJUNTO DE NORMAS ANTIGUAS DE 1992

IEC 61439 I CONJUNTO DE NORMAS NUEVAS DE 2012

DEFINICIONES

Conjuntos de aparamenta de potencia (PSC):

Sistema completo de componentes eléctricos y mecánicos (envolventes, embarrados, unidades funcionales, etc.) según la definición del fabricante original y que se ha diseñado para ser montado de acuerdo con las instrucciones del fabricante original. Ejemplo: envolvente de distribución preequipada.

■ Fabricante del conjunto:

Entidad que lleva a cabo el ensamblado, el cableado y es responsable del conjunto acabado.

Ejemplo: cuadrista.

■ Fabricante original:

Entidad responsable del diseño original y la correspondiente verificación de un conjunto de conformidad con la norma IEC 61439. Ejemplo: Legrand.

El fabricante del conjunto y el fabricante original pueden ser la misma entidad. Ejemplo: cuadros montados y cableados por Legrand.

FUNCIONES Y RESPONSABILIDADES DE CADA ENTIDAD

El fabricante original fabrica o especifica los distintos componentes que forman el cuadro de distribución: dispositivos de protección, envolventes, sistema de distribución, etc. Todos estos componentes disponen de certificados de conformidad de producto. Las configuraciones representativas creadas con arreglo a estos productos se someten a una serie de ensayos: son los ensayos de tipo.

El fabricante del conjunto monta el cuadro eléctrico, instala el equipamiento y realiza el cableado de acuerdo con las reglas de selección e instalación de los productos según los métodos definidos por el fabricante original, las normas, la legislación y las buenas prácticas. El fabricante del conjunto es responsable de la certificación del conjunto acabado y de suministrar la documentación técnica. Los ensayos individuales (aislamiento, continuidad de las partes conductoras expuestas) y la inspección final se registran en un informe individual simplificado (véase el ejemplo en el anexo).

Posteriormente, se puede certificar el cumplimiento íntegro de este proceso por medio de una declaración de conformidad (véase el ejemplo en la página 62) y el conjunto puede llevar la marca correspondiente.

El cumplimiento de la norma IEC 61439-2 también permite incluir la marca CE, si resulta necesario.

Ensayos que debe realizar el fabricante original

La norma IEC 61439-2 requiere la verificación de 13 puntos de características para la certificación de conjuntos de aparamenta (PSC).

Estas verificaciones corresponden al conjunto acabado y no sustituyen a los ensayos de cumplimiento de los componentes especificados por las normas de productos.

La verificación se puede llevar a cabo por medio de tres métodos distintos, en función de las características:

- Ensayos realizados en una muestra de un conjunto o en componentes de conjuntos
- Comparación estructurada de una propuesta de diseño para un conjunto, o componentes de un conjunto, con un diseño de referencia que ha sido verificado por medio de ensayos
- Verificación del cumplimiento de las reglas de diseño o cálculos estrictos aplicados a una muestra de un conjunto o a componentes de conjuntos, incluyendo unos márgenes de seguridad apropiados

Si existen varios métodos para realizar la misma verificación, se considera que dichos métodos son equivalentes y se deja en manos del fabricante original la responsabilidad sobre la elección del método.

Como fabricante original, Legrand ha encargado a laboratorios reputados la mayor parte de estas verificaciones de muestras representativas.

Si se cumplen íntegramente todos los requisitos e instrucciones suministrados por Legrand, el fabricante del conjunto no necesita repetir estas verificaciones en el conjunto acabado.

Cuando el fabricante del conjunto incorpora sus propias medidas, que no están incluidas en la verificación del fabricante original, se considera que es el fabricante original de dichas medidas y, por lo tanto, debe repetir estas verificaciones.

VERIFICACIONES DE DISEÑO							
N.º	Constantation was a deba comment	Artículo o	Opcior	nes de verificación disp	onibles		
N.º	Característica que se debe comprobar	sección	Ensayos	Comparación	Evaluación		
1	Resistencia de los materiales y componentes: Protección contra la corrosión Propiedades de los materiales aislantes: Estabilidad térmica Resistencia de los materiales aislantes a calentamiento anómalo y fuego debidos a efectos eléctricos internos	10.2 10.2.2 10.2.3 10.2.3.1 10.2.3.2	SÍ SÍ SÍ	N0 N0 N0	N0 N0 N0		
	Resistencia a la radiación ultravioleta (UV) Elevación Impactos mecánicos Marcado	10.2.4 10.2.5 10.2.6 10.2.7	SÍ SÍ SÍ	NO NO NO NO	SÍ NO NO NO		
2	Grado de protección proporcionado por la envolvente	10.3	SÍ	NO	SÍ		
3	Distancias de aislamiento	10.4	SÍ	NO	NO		
4	Líneas de fuga	10.4	SÍ	NO	NO		
5	Protección contra choques eléctricos e integridad de los circuitos de protección: Efectividad de la continuidad entre las partes conductoras expuestas del conjunto y el circuito de protección	10.5.2	SÍ	NO	NO NO		
	Resistencia a cortocircuito del circuito de protección	10.5.3	SÍ	SÍ	NO		
6	Incorporación de dispositivos de conexión y componentes	10.6	N0	NO	SÍ		
7	Conexiones y circuitos eléctricos internos	10.7	NO	NO	SÍ		
8	Bornes para conductores externos	10.8	NO	NO	SÍ		
9	Propiedades dieléctricas: Tensión soportada a frecuencia Tensión soportada al impulso	10.9 10.9.2 10.9.3	SÍ SÍ	N0 N0	NO SÍ		
10	Límites de calentamiento	10.10	SÍ	SÍ	SÍ		
11	Resistencia a cortocircuitos	10.11	SÍ	SÍ	NO		
12	Compatibilidad electromagnética (EMC)	10.12	SÍ	NO	SÍ		
13	Funcionamiento mecánico	10.13	SÍ	NO	NO		

Las 13 verificaciones de diseño en profundidad

ENSAYO 1

■ RESISTENCIA DE LOS MATERIALES Y PARTES DEL CUADRO

Se debe considerar que las capacidades mecánicas, eléctricas y térmicas de los materiales de construcción y componentes de los conjuntos han quedado probadas por medio de la verificación de las características de fabricación y prestaciones. Por lo tanto, se llevan a cabo ensayos para comprobar la resistencia a: calentamiento, radiación ultravioleta, elevación e impactos mecánicos.

ENSAYO 2

■ GRADO DE PROTECCIÓN DE LAS ENVOLVENTES (IP)

El IP define la capacidad para proteger a las personas de los componentes peligrosos y evitar la entrada de cuerpos sólidos (primer número) y líquidos (segundo número). La letra adicional indica la protección contra el acceso a las partes peligrosas.

ENSAYO 3

■ DISTANCIAS DE AISLAMIENTO Y LÍNEAS DE FUGA

Los métodos de medición de las distancias de aislamiento y de las líneas de fuga se trata en profundidad en el Anexo F de la norma IEC 61439-1, que está basada en la norma IEC 60664-1. Las distancias de aislamiento se miden entre las partes bajo tensión con polaridades diferentes, y también entre las partes bajo tensión y las partes conductoras expuestas (en el anexo se incluye un eiemnlo)

ENSAYO 4

■ MONTAJES DE LOS APARATOS Y EQUIPAMIENTOS

Legrand garantiza el cumplimiento de las distancias correspondientes para las tensiones de aislamiento de estos equipos cuando se instalan de conformidad con las condiciones especificadas. La experiencia ha demostrado que el cableado constituye el riesgo más elevado. Se deben comprobar meticulosamente las conexiones, grupos de conductores y juegos de barras. Los conectores, conexiones remachadas, juntas y soportes metálicos que no sean adecuados pueden reducir los valores de aislamiento previstos inicialmente.

ENSAYO 5

■ EFICACIA DEL CIRCUITO DE PROTECCIÓN

La continuidad del circuito de protección es un factor decisivo para la seguridad. Se comprueba: de conformidad con la norma IEC 61439-1 a una corriente de ensayo de 25 A entre el borne que conecta los conductores de protección y todas las masas, y también de conformidad con un ensayo adicional de Legrand, a una corriente de fallo alta que podría producirse en caso de desconexión accidental de un conductor.

ENSAYO 6

■ INCORPORACIÓN DE COMPONENTES Y DISPOSITIVOS DE CONEXIÓN

Se trata de reglas acerca de la instalación de aparatos incluidos en el conjunto, tanto si son componentes fijos o extraíbles, y del cumplimiento de los requisitos de cableado establecidos por el cliente. Esto también incluye la accesibilidad para ajustar y reconfigurar los aparatos; y todo tipo de señalizaciones (LED, indicadores, etc.).

ENSAYO 7

■ CONEXIONES Y CIRCUITOS ELÉCTRICOS INTERNOS

Este ensayo consiste en la verificación de la conformidad de los circuitos de control y potencia respecto a los requisitos de diseño. Incluye el dimensionado correcto de los cables y los juegos de barras, la conexión a tierra de los circuitos de control, etc., así como la identificación de los distintos circuitos mediante un código de colores

ENSAYO8

■ BORNES PARA CONDUCTORES EXTERNOS

Esta regla requiere que el usuario final especifique la capacidad de los bornes y si son adecuados para conductores de aluminio o de cobre. También incluye la comprobación de todos los tipos de bornes que se pueden utilizar para las entradas y salidas de cables (neutro, PEN, símbolo PE, etc.).

ENSAYO 10

■ LÍMITES DE CALENTAMIENTO

Ensayo de calentamiento en conjuntos Este ensayo permite comprobar si los conjuntos funcionan correctamente en condiciones máximas de uso (corriente, número de aparatos, volumen de la envolvente). Se emplea para definir los datos del balance térmico para un calentamiento promedio del aire dentro de los conjuntos inferior a 30 °C y un calentamiento de los bornes inferior a 70 °C.

Consulte la estimación del balance térmico para envolventes XL³ en la página 70.

ENSAYO 12

■ COMPATIBILIDAD ELECTROMAGNÉTICA

Este ensayo consiste en controlar las perturbaciones electromagnéticas causadas por el conjunto en funcionamiento dentro de su entorno, con el objeto de no provocar perturbaciones.

ENSAYO 9

■ PROPIEDADES DIELÉCTRICAS

Los ensayos dieléctricos comprueban los niveles de resultados de aislamiento para la tensión de servicio máxima. Se llevan a cabo a una frecuencia de alimentación de 50 Hz y con una forma de ondas de tensión que simulan el efecto del impacto de un rayo.

ENSAYO 11

■ RESISTENCIA A CORTOCIRCUITOS

Los ensayos efectuados garantizan la resistencia, frente a los esfuerzos térmicos y electrodinámicos, de los juegos de barras y de sus soportes, los aparatos de seccionamiento (Vistop/DPX-IS) y de protección (DMX³/DPX³/DX³) y las envolventes.

ENSAYO 13

■ VERIFICACIÓN DEL FUNCIONAMIENTO MECÁNICO

Siguiendo las prescripciones establecidas en la norma, los ensayos se efectúan sobre las partes y dispositivos que no son objeto de requisitos específicos.

El buen funcionamiento mecánico se verifica mediante la ejecución de 200 ciclos de maniobras sobre los bastidores extraíbles y las fijaciones de placas frontales.

Respuesta a los ensayos

Las verificaciones de diseño se llevan a cabo en una muestra de un conjunto o en componentes de conjuntos para demostrar que el diseño cumple los requisitos de la norma para conjuntos aplicable.

Estas verificaciones son efectuadas de manera oficial por organismos independientes, sobre conjuntos representativos de las configuraciones habituales de cableado y disposición de equipos (véase la imagen adjunta).

CARACTERÍSTICAS QUE SE DEBEN COMPROBAR	FABRICANTE ORIGINAL (LEGRAND)
Resistencia de los materiales y componentes	Certificado LOVAG 10.2
Grado de protección (IP)	Certificado LOVAG 10.3
Distancias de aislamiento	Certificado LOVAG 10.4
Líneas de fuga	Certificado LOVAG 10.4
Protección contra choques eléctricos e integridad de los circuitos de protección	Certificado LOVAG 10.5
Integración de dispositivos de conexión y componentes	Verificada en las configuraciones sometidas a ensayos Legrand 10.6
Conexiones y circuitos eléctricos internos	Verificados en las configuraciones sometidas a ensayos Legrand 10.7
Bornes para conductores externos	Verificados en las configuraciones sometidas a ensayos Legrand 10.8
Propiedades dieléctricas	Certificado LOVAG 10.9 (duración 5 s)
Calentamiento	Certificado LOVAG 10.10
Resistencia a cortocircuitos	Certificado LOVAG 10.11
Compatibilidad electromagnética	Certificado LOVAG 10.12
Funcionamiento mecánico	Certificado LOVAG 10.13

Ensayos que debe realizar el fabricante del conjunto

Después de realizar el montaje y cableado del conjunto, el fabricante del conjunto debe someterlo a los ensayos rutinarios individuales, que están especificados y definidos en la norma IEC 61439-1 y a los que a veces se hace referencia como ensayos de conjunto.

Los ensayos rutinarios individuales incluyen determinadas inspecciones visuales. El único ensayo realmente instrumental es el dieléctrico (tensión soportada a una frecuencia de 50 Hz y tensión soportada al

Estas verificaciones están diseñadas para detectar defectos de materiales y de calidad en los componentes y para comprobar si el conjunto fabricado funciona correctamente.

Los ensayos rutinarios individuales no son necesarios en dispositivos у componentes

independientes que se incorporen al conjunto si se instalan de conformidad con las instrucciones del conjunto.

En este caso, se deben utilizar las envolventes, los interruptores automáticos y los sistemas de distribución de Legrand

LAS 10 VERIFICACIONES RUTINARIAS **INDIVIDUALES**

CARACTERÍSTICAS QUE SE DEBEN COMPROBAR	FABRICANTE DEL CONJUNTO (Constructor del cuadro)
Grado de protección (IP)	Comprobación visual 11.2
Distancias de aislamiento	Comprobación visual 11.3
Líneas de fuga	Comprobación visual 11.3
Protección contra choques eléctricos e integridad de los circuitos de protección	Comprobación in situ 11.6
Integración de dispositivos de conexión y componentes	Comprobación visual 11.5
Conexiones y circuitos eléctricos internos	Comprobación in situ 11.6
Bornes para conductores externos	Comprobación visual 11.7
Propiedades dieléctricas	Ensayo que se debe realizar 11.9 (duración 1 s)
Funcionamiento mecánico	Comprobación visual 11.8
Cableado, comportamiento operativo y funcional	Ensayo de funcionamiento o comprobación visual 11.10

GRADO DE PROTECCIÓN (IP) (ARTÍCULO 11.2)

El grado de protección de un conjunto define su capacidad para proteger a las personas del contacto directo con partes bajo tensión y evitar la entrada de cuerpos sólidos y líquidos. Se especifica por medio del código IP de conformidad con los ensayos descritos en la norma IEC 60529 (véase más abajo). El código IP que requiere un conjunto en una envolvente depende de las condiciones de instalación y de las influencias externas a las que esté sometido. En todos los casos debe ser, al menos, IP 2X.

El grado de protección de un conjunto abierto debe ser, al menos, IP XXB

El cumplimiento de las reglas para conjuntos permite asegurarse de que el código IP de las envolventes XL^3 es el indicado

Responsabilidades del fabricante del conjunto

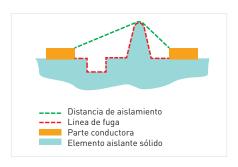
El fabricante del conjunto debe llevar a cabo una inspección visual, una vez estén montados todos los componentes, para comprobar que la envolvente y sus componentes cumplen el grado de protección indicado.

Por ejemplo, si hay elementos auxiliares de señalización y control instalados en puertas o cuadros, su propio IP y su instalación se deben ajustar al valor IP indicado.

En ese caso, no es necesario realizar ensayos adicionales.

CÓDIGO IP CONFORME A LA NORMA IEC 60529

Primer número: protección contra la entrada de cuerpos sólidos			(AE	ra adicional IP 2 3CD): protección stacto directo po rtes bajo tensión	contra el r acceso a	
IP	ensayos		IP	ensayos	protección	
0		Sin protección		Ø 50 mm		
1	Ø 50 mm	Protección contra cuerpos sólidos de tamaño superior a 50 mm	A	4	Se mantiene el dorso de la mano alejado de partes peligrosas	
2	Ø 12,5 mm	Protección contra cuerpos sólidos de tamaño superior a 12,5 mm	В	12 mm	Si se introduce un dedo, no puede entrar en contacto con partes peligrosas	
3	Ø 2,5 mm	Protección contra cuerpos sólidos de tamaño superior a 2,5 mm	С	i i	Si se introduce una herramienta (por ejemplo, un destornillador), no puede entrar en contacto con partes peligrosas	
4	Ø 1 mm	Protección contra cuerpos sólidos de tamaño superior a 1 mm				
5		Protección contra polvo (no se forman depósitos nocivos)	D		Si se introduce un cable, no puede entrar en contacto con partes peligrosas	
6		Protección total contra el polvo				


Segundo número: protección contra líquidos						
IP	ensayos					
0		Sin protección				
1		Protección contra gotas de agua que caen verticalmente (condensación)				
2		Protección contra gotas de agua que caen con hasta 15° respecto a la vertical				
3		Protección contra agua de lluvia que cae con hasta 60° respecto a la vertical				
4		Protección contra agua rociada desde todas las direcciones				
5		Protección contra chorros de agua desde todas las direcciones				
6		Protección total contra chorros de agua de fuerza similar a mar gruesa				
7	15 cm	Protección contra los efectos de la inmersión				
8	E	Protección contra los efectos de la inmersión prolongada en condiciones especificadas				
9		Protección contra chorros de agua a alta presión y alta temperatura				

Tipo de envolvente	Sin puerta	Con puerta				
XL ³ 160	IP 30	IP 40				
XL ³ 400	IP 30	IP 401				
XL ³ 400 IP 55	-	IP 55				
XL3 800	IP 30	IP 401				
XL ³ 800 IP 55	-	IP 55				
XL ³ 4000	IP 30	IP 55				
XL ³ 6300	IP 30	IP 55				
1: IP 43 con juntas						

FNSAYOS DE NORMAS

DISTANCIAS DE AISLAMIENTO Y LÍNEAS DE FUGA (ARTÍCULO 11.3)

- Las distancias de aislamiento representan la distancia más corta entre dos partes conductoras con tensiones distintas. En caso de una ruptura dielectrica disruptiva del aire, esta es la ruta que seguirá el arco eléctrico. Las distancias mínimas de aislamiento se determinan de acuerdo con la tensión soportada al impulso Uimp del conjunto.
- Las líneas de fuga representan la distancia más corta a través de la superficie de los materiales aislantes. Las líneas de fuga mínimas se determinan de acuerdo con la tensión asignada de aislamiento Ui para el conjunto y el grado de contaminación del entorno de instalación. Como regla general, se puede aplicar un grado de contaminación 2 para las aplicaciones residenciales y comerciales y un grado de contaminación 3 para las aplicaciones industriales.

DISTANCIAS MÍNIMAS DE AISLAMIENTO EN EL AIRE DE CONFORMIDAD CON LA IEC 61439-1					
Corriente asignada soportada al impul- so Uimp (kV)	Distancia mínima de aislamiento (mm)				
≤ 2,5	1,5				
4	3				
6	5,5				
8	8				
12	14				

LÍNEAS DE FUGA MÍNIMAS DE CONFORMIDAD CON LA IEC 61439-1								
Tensión	Grado de contaminación							
asignada de	1		2			3		
aislamiento Ui (V) ¹	Todas las amunas	Grup	o de mate	riales ²	G	rupo de n	nateriale	5 ²
(Ui ≽ Ue)	Todos los grupos de materiales ²	I	II	IIIa IIIb	I	II	IIIa	IIIb
250	1,5	1,5	1,8	2,5	3,2	3,6	4	4
320	1,5	1,6	2,2	3,2	4	4,5	5	5
400	1,5	2	2,8	4	5	5,6	6,3	6,3
500	1,5	2,5	3,6	5	6,3	7,1	8,0	8,0
630	1,8	3,2	4,5	6,3	8	9	10	10
800	2,4	4	5,6	8	10	11	12,5	
1000	3,2	5	7,1	10	12,5	14	16	
1250	4,2	6,3	9	12,5	16	18	20	
1600	5,6	8	11	16	20	22	25	

1: Para los valores de tensión de aislamiento más bajos, consulte la tabla 2 de la norma IEC 61439-1

2: Los grupos de materiales se clasifican de la siguiente forma, en función del rango de valores del índice de resistencia al encaminamiento eléctrico [CTI]

- Grupo de materiales II - 600 « CTI - 600 » Grupo de materiales III - 600 « CTI < 600 » Grupo de materiales III - 175 « CTI < 400 » Grupo de materiales III - 100 « CTI < 175

La correspondencia entre la tensión nominal de la alimentación y la tensión asignada soportada al impulso (Uimp) del equipo se muestra en la tabla G1 de la IEC 61439-1.

Responsabilidades del fabricante del conjunto

El cumplimiento de las distancias de aislamiento y de las líneas de fuga depende en gran medida del cumplimiento de las especificaciones y de la atención que se preste durante el montaje de los componentes del conjunto. Por lo tanto, es responsabilidad del fabricante del conjunto comprobar el conjunto acabado por medio de una inspección visual o una medición física si la inspección visual no resulta adecuada.

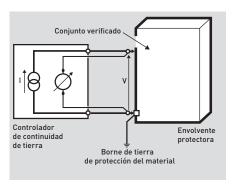
Las distancias de aislamiento se miden entre las partes bajo tensión con polaridades diferentes, y también entre las partes bajo tensión y las masas. Los métodos de medición se describen en el Anexo F de la norma IEC 61439-1

La experiencia ha demostrado que el cableado constituye el riesgo más elevado (véase la página 24). Los conectores, conexiones atornilladas, juntas y soportes metálicos que no sean adecuados pueden reducir las distancias de aislamiento. Debe prestarse especial atención a lo siguiente:

- Las distancias entre las conexiones de los equipos (terminales, bornes, etc.) y las masas que se encuentren cerca (chasis, placas, etc.)
- Las distancias entre conexiones
- Conexiones atornilladas y conexiones de barras (distancias a otras barras y a la masa) Si es necesario, se pueden emplear tabiques o pantallas aislantes para aumentar las distancias de aislamiento en el aire.

Si las distancias de aislamiento están por debajo de los valores indicados en la tabla adjunta, se debe realizar un ensayo de tensión soportada al impulso (véase la página 60).

equipamientos HX3/VX3 se montan y se conectan de conformidad con las condiciones especificadas, se asegura el cumplimiento de las distancias mínimas de aislamiento para las tensiones de aislamiento de estos equipos.


PROTECCIÓN CONTRA CHOQUES ELÉCTRICOS E INTEGRIDAD DE LOS CIRCUITOS DE PROTECCIÓN (ARTÍCULO 11.4)

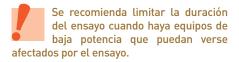
La principal protección contra choques eléctricos de los conjuntos de distribución cerrados la ofrece una envolvente de metal o aislada (armarios o cajas).

Adicionalmente, cada conjunto debe contar con un conductor de protección para facilitar el corte automático de la alimentación si se produce un fallo en el interior del conjunto o en los circuitos externos alimentados a través del conjunto. Este conductor de protección debe ser capaz de soportar los cortocircuitos que se puedan producir en el lugar en el que esté instalado el conjunto. Las reglas y precauciones para cableado aplicables se encuentran en la página 4.

Todas las partes conductoras metálicas del conjunto deben estar conectadas entre sí y al conductor de protección.

La construcción de conjuntos "totalmente aislados" está sujeta a precauciones específicas (véase la página 6).

PRINCIPIO DEL ENSAYO DE CONTINUIDAD La medición se realiza a 10 A y la resistencia no debe superar $0,1~\Omega$.


El conjunto de envolventes XL³ proporciona la continuidad de las masas

Responsabilidades del fabricante del conjunto

Debe llevarse a cabo una comprobación para asegurarse de que las distintas masas estén conectadas al borne del conductor de protección externo entrante.

Para realizar la comprobación se debe utilizar un instrumento para medir la resistencia que sea capaz de transportar una corriente de, al menos, 10 A (CA o CC). Esta corriente se introduce entre cada masa y el borne para el conductor de protección externo. La resistencia medida no debe superar $0,1 \Omega$.

Se deben llevar a cabo comprobaciones aleatorias in situ del par de apriete de los conjuntos atornillados y remachados. Las fichas de datos técnicos y las guías contienen información detallada sobre los pares de apriete.

INTEGRACIÓN DE DISPOSITIVOS DE CONEXIÓN Y COMPONENTES (ARTÍCULO 11.5)

Todos los componentes incorporados a un conjunto deben ser adecuados para su uso y deben cumplir las normas IEC correspondientes. Los valores de las características eléctricas de los equipos (tensión, corriente, frecuencias asignadas, capacidad de cierre y de corte, resistencia a cortocircuitos, tensión de aislamiento, tensión asignada soportada al impulso, etc.) deben cumplir las especificaciones y las condiciones de instalación del conjunto.

Por ejemplo, para un cuadro general de baja tensión especificado para una tensión de servicio Ue de 400 V y, por lo tanto, apto para su uso en un sistema de 400 V, ninguno de los productos de este conjunto debe tener una tensión de aislamiento Ui de menos de 400 V. De igual forma, su interruptor general, entre otros requisitos, debe estar dimensionado para la corriente de cortocircuito.

Toda la información sobre cualquier protección que tenga que ir asociada debe detallarse en la placa de características y en la documentación técnica. Debe existir un acceso sencillo al ajuste y reinicio de equipos y a los bornes para la conexión de los mismos. Los juegos de barras deben estar diseñados y dimensionados para poder soportar los cortocircuitos. Los conductores deben estar dimensionados de conformidad con las reglas de la norma IEC 60364-5-5, y deben ser adecuados para las condiciones del interior de los conjuntos (véase la página 20).

Todos los productos se deben usar de conformidad con las instrucciones del fabricante.

La primera parte de esta guía proporciona recomendaciones y precauciones esenciales para la construcción de conjuntos. En los cuadernos de montaje y en las guías de producto se proporcionan recomendaciones específicas para las envolventes, sistemas de repartición y productos Legrand XL³.

Responsabilidades del fabricante del conjunto

El fabricante del conjunto debe comprobar que los productos y sus identificaciones cumplen las especificaciones del conjunto y que la instalación se ajusta a las instrucciones del fabricante original. Esta comprobación se realiza por medio de una inspección visual.

El fabricante del conjunto debe asegurarse de que la documentación técnica contenga los manuales y demás instrucciones suministradas por el fabricante original.

Puede descargar los cuadernos de montaje de Legrand desde el catálogo electrónico.

Los cuadernos de montaje XL³ incluyen las instrucciones del conjunto y proporcionan información

adicional para la selección e instalación de los equipos, accesorios y sistemas de repartición. Los cuadernos de montaje se pueden descargar en: http://www.legrand.es La lista está disponible en los anexos de la página 106.

CONEXIONES Y CIRCUITOS ELÉCTRICOS INTERNOS (ARTÍCULO 11.6)

Los conductores de circuitos de potencia y los juegos de barras se deben dimensionar e instalar de acuerdo con la corriente de cortocircuito que podría producirse en el punto de instalación del conjunto.

Para obtener información adicional sobre la selección y dimensionado de los juegos de barras, consulte los cuadernos de montaje de XL³ o el software XLPRO³. La elección de conductores debe ajustarse a los requisitos de la norma IEC 60364-5-52 (véase la página 12).

En determinadas condiciones, se puede reducir la sección de los conductores de neutro (véase la página 28).

Debe ser posible identificar los conductores de neutro por medio del color.

Los circuitos auxiliares deben protegerse contra los efectos de los cortocircuitos o configurarse de forma que no haya posibilidad de que se produzca un cortocircuito.

Responsabilidades del fabricante del conjunto

Se deben realizar comprobaciones aleatorias in situ para verificar que las conexiones estén correctamente apretadas.

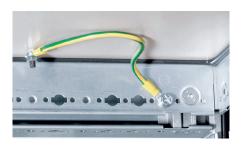
Se debe comprobar el conjunto acabado por medio de una inspección visual. El fabricante del conjunto es responsable de que se respete el diagrama de identificación de los conductores.

Ejemplo: comprobación del par de apriete.

EL uso de los sistemas de repartición optimizados HX³/VX³ de Legrand (juegos de barras, kits de conexión y alimentación, repartidores de filas) simplifica el cableado y la comprobación del cumplimiento de la norma.

CERTIFICACIÓN DE CONJUNTOS

BORNES PARA CONDUCTORES EXTERNOS (ARTÍCULO 11.7)


La cantidad, tipo e identificación de los bornes se debe comprobar de conformidad con las instrucciones de fabricación del conjunto.

Los conductores no deben someterse a esfuerzos que pudieran reducir su ciclo de vida útil normal.

El fabricante del conjunto debe indicar si los bornes son adecuados para conductores de cobre o aluminio, o para ambos.

Se deben seleccionar bornes que permitan conectar los conductores externos por un medio (tornillos, conectores, etc.) que proporcione la presión de contacto necesaria correspondiente al valor asignado de corriente y a la resistencia a los cortocircuitos del equipo y que hagan posible mantener el circuito.

Los bornes de los conductores externos se deben marcar de conformidad con la IEC 60445.

Ejemplo: los puntos de conexión de las conexiones equipotenciales suministrados se marcan con el símbolo (de tierra).

Ejemplo: se deben marcar las fases N, L1, L2, L3, al menos, en los extremos y en los puntos de

Responsabilidades del fabricante del conjunto

El fabricante del conjunto debe comprobar todos los tipos de bornes que se pueden utilizar para las entradas y salidas de cables (neutro, PEN, etc.), así como que sean adecuados para conductores de cobre o aluminio, o ambos.

Se deben identificar los bornes para los conductores externos.

Se debe comprobar el conjunto acabado por medio de una inspección visual.

FUNCIONAMIENTO MECÁNICO (ARTÍCULO 11.8)

Se debe comprobar el correcto funcionamiento de los mandos mecánicos, dispositivos de enclavamiento y equipos de bloqueo mecánicos, incluidos los que están asociados a piezas extraíbles.

No es necesario realizar este ensayo de verificación en los equipos (por ejemplo, un interruptor automático extraíble) de un CONJUNTO que se haya sometido previamente a ensayos de tipo de conformidad con las normas de productos aplicables a menos que durante su montaje se haya modificado su funcionamiento mecánico.

Para los equipos en los que se necesita realizar un ensayo de verificación, se debe comprobar que el funcionamiento mecánico sea satisfactorio después de instalarlos en el CONJUNTO. Se deben realizar 200 ciclos de maniobras. Se debe comprobar simultáneamente el funcionamiento de los dispositivos mecánicos de enclavamiento asociados a estos movimientos.

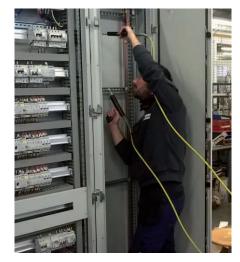
Ejemplo: ensayo de funcionamiento de las puertas, placas frontales, dispositivos de enclavamiento, etc.

Responsabilidades del fabricante del conjunto

Se debe comprobar el correcto funcionamiento mecánico de las puertas y placas frontales montadas con bisagras, así como los elementos de mando mecánicos, dispositivos de enclavamiento y equipos de bloqueo mecánicos, incluidos los que están asociados a piezas extraíbles. Se deben realizar 200 ciclos de maniobras.

Se considera que el ensayo es satisfactorio si los equipos y los dispositivos de enclavamiento siguen en buen estado, el grado de protección especificado no se ve afectado y el esfuerzo requerido para hacerlos funcionar es prácticamente el mismo que antes del ensayo.

PROPIEDADES DIELÉCTRICAS (ARTÍCULO 11.9)


Los ensayos dieléctricos comprueban los valores de aislamiento para la tensión de servicio máxima. Se llevan a cabo a una frecuencia de alimentación de 50 Hz y con una forma de ondas de tensión que simulan el efecto del impacto de un rayo.

■ Responsabilidades del fabricante del conjunto

El ensayo dieléctrico se debe llevar a cabo de conformidad con las instrucciones o especificaciones para el conjunto.

- Ensayo a la frecuencia de alimentación para un valor de aislamiento Ui dado
- Ensayo de tensión soportada al impulso (onda de $1,2/50 \mu s$) para un valor de aislamiento Uimp dado

Se debe interrumpir la alimentación del conjunto que se vaya a someter al ensayo y no debe haber ningún equipo receptor conectado.

Ejemplo: ensayo dieléctrico a frecuencia de alimentación.

Todos los dispositivos de seccionamiento deben estar en la posición I (ON).

La tensión de ensayo se debe aplicar en la secuencia siguiente:

- Entre cada polo de cada circuito (alimentación, control, elementos auxiliares) y la masa del conjunto,
- Entre cada polo del circuito principal y los otros polos (entre cada fase y entre cada fase y el neutro),
- Entre cada circuito, si no están conectados eléctricamente (por ejemplo, circuito de mando separado o en MBTS y circuito principal),
- Entre el circuito de protección y la masa para conjuntos de clase II,
- Entre partes extraídas o separadas para la función de seccionamiento.

Todos los componentes con elementos electrónicos se deben desconectar para evitar que resulten dañados o destruidos.

Los bloques diferenciales, los DPX3 diferenciales y las unidades de protección MP6 tienen un interruptor selector de ensayos dieléctricos que permite proteger los elementos electrónicos integrados.

Como alternativa, para los conjuntos con una protección de corriente asignada de entrada de 250 A o menos,

la resistencia de aislamiento se puede medir con un equipo de medición del aislamiento a una tensión de, al menos, 500 Vcc.

En este caso, el ensavo es satisfactorio si la resistencia de aislamiento entre los circuitos y las masas es, al menos, 1000 Ω/V, referida a la tensión de alimentación de estos circuitos respecto a la conexión a tierra.

TABLA 8 - TENSIÓN SOPORTADA A FRECUENCIA INDUSTRIAL PARA LOS CIRCUITOS PRINCIPALES (10.9.2)

Tensión asignada de aislamiento U _i (CA o CC entre fases)	Tensión de ensayo de aislamiento CA rms	Tensión de ensayo de aislamiento CA ^b
V	V	V
U1 ≤ 60	1000	1415
60 < U _i ≤ 300	1500	2120
300 < U₁ ≤ 690	1890	2670
690 < U _i ≤ 800	2000	2830
800 < U _i ≤ 1000	2200	3110
1000 < U _i ≤ 1500 ^a	-	3820

^a Solo para CC

^b Tensiones de ensayo en la IEC 60664-1, 6.1.3.4.1, 5.º párrafo

INDUSTRIAL PARA LOS	TABLA 9 - TENSIÓN SOPORTADA A FRECUENCIA INDUSTRIAL PARA LOS CIRCUITOS AUXILIARES Y DE CONTROL (10.9.2)				
Tensión asignada de aislamiento U	Tensión de ensayo de				

aislamiento U (entre fases) V	aislamiento CA rms ^b
U1 ≤ 12	250
12 < U _i ≤ 60	500
60 < U	Véase la tabla 8

TABLA 10 - TENSIÓN SOPORTADA AL IMPULSO (10.9.3)										
Tensión asignada	Tensiones de ensayo y altitudes correspondientes durante el ensayo									
soportada al impulso		U _{i 2/50} . CA,	valor de c kV	resta y CC				CA rms kV		
U _{imn} kV	Nivel del mar	200 m	500 m	1000 m	2000 m	Nivel del mar	200 m	500 m	1000 m	2000 m
2,5	2,95	2,8	2,8	2,7	2,5	2,1	2,0	2,0	1,9	1,8
4,0	4,8	4,8	4,7	4,4	4,0	3,4	3,4	3,3	3,1	2,8
6,0	7,3	7,2	7,0	6,7	6,0	5,1	5,1	5,0	4,7	4,2
8,0	9,8	9,6	9,3	9,0	8,0	6,9	6,8	6,6	6,4	5,7
12,0	14,8	14,5	14,0	13,3	12,0	10,5	10,3	9,9	9,4	8,5

CABLEADO, COMPORTAMIENTO **OPERATIVO Y FUNCIONAL** (ARTÍCULO 11.10)

Se debe realizar una comprobación para determinar si la información especificada y el marcado son completos.

El fabricante del CONJUNTO debe dotar a cada CONJUNTO de una placa de características, con un marcado que sea duradero y esté situado en un lugar visible y legible cuando el CONJUNTO esté instalado y en funcionamiento

En función de la complejidad del CONJUNTO, puede que resulte necesario examinar el cableado y realizar un ensayo de funcionamiento eléctrico. El procedimiento de ensayo y la cantidad de ensayos dependen de si el CONJUNTO tiene dispositivos de enclavamiento, secuencias de control complicadas, etc.

En determinados casos, puede resultar necesario llevar a cabo este ensayo in situ, o repetirlo, antes de poner en servicio la instalación.

Toda la información técnica enumerada aquí se debe incluir,

cuando corresponda, en la documentación o las especificaciones técnicas del fabricante del conjunto y entregarse con el conjunto.

El fabricante del conjunto también debe especificar todas las condiciones de manipulación, instalación, funcionamiento y mantenimiento del conjunto y de los equipos que contenga.

Para ello, en las páginas siguientes (páginas 62 a 65) se proporcionan ejemplos de una declaración de conformidad, un certificado de ensayo y un informe de ensayo, para facilitar la elaboración de las especificaciones técnicas.

Nombre del constructor del cuadro TD01-RDC IEC 61439-2

Ejemplo de una placa de características

Responsabilidades del fabricante del conjunto

Se debe verificar la información y el marcado. También hay que llevar a cabo un ensayo de funcionamiento antes de la puesta en servicio del conjunto.

La placa de características debe incluir la información siguiente:

Nombre o marca comercial del fabricante del conjunto (responsable del conjunto acabado), por ejemplo, el nombre de la empresa del constructor del cuadro.

Denominación del tipo o un número de identificación, por ejemplo, TD01-RDC o q18732.

Forma de identificación de la fecha de fabricación, por ejemplo, 2015, 2015-03 o

IEC 61439-X (se debe identificar la parte X específica), por ejemplo, IEC 61439-2.

Se debe incluir la siguiente información adicional en la documentación técnica suministrada con el conjunto (documentación o especificaciones técnicas):

- Tensión asignada del conjunto (Un), por ejemplo, Un = 400 V
- Tensión asignada de empleo de un circuito (Ue), por ejemplo, Ue = 230 V (si es distinta
- Tensión asignada soportada al impulso (Uimp), por ejemplo, Uimp = 6 kV
- Tensión de aislamiento asignada (Ui), por ejemplo, Ui = 800 V
- Corriente asignada del conjunto (Ina), por ejemplo, Ina = 3100 A
- Corriente asignada de un circuito (Inc), por ejemplo, Inc = 250 A
- Corriente asignada de cresta admisible (lpk), por ejemplo, lpk = 140 kA
- Corriente asignada de corta duración admisible (Icw), por ejemplo, Icw = 50 kA 1 s
- Corriente asignada de cortocircuito condicional (Icc), por ejemplo, Icc = 70 kA
- Frecuencia asignada (fn), por ejemplo, fn = 50 Hz
- Factor de simultaneidad asignado (RFD), por ejemplo RFD = 0.7

Ejemplo de declaración de conformidad

DECLARACIÓN DE CONF	DRMIDAD
Nombre de la empresa: Dirección:	
Destinatario: N.º de documento: N.º de conjunto:	Fecha: Fecha:
Norma IEC 61439-2	
fabricado de conformidad Los componentes utilizar respecta a las verificacion Verificad Compro Compro Verificad Compro	ante del conjunto certifica que el conjunto de aparamenta anteriormente indicado se ha con los requisitos de la norma IEC 61439-2 / IEC 61439-1. Tos se han instalado de acuerdo con las instrucciones del fabricante original en lo que es de diseño llevadas a cabo de conformidad con la IEC 61439-2: To de la resistencia de los materiales y de las partes del cuadro To de la grado de protección To de las distancias de aislamiento y las líneas de fuga To del circuito de protección To de la integración de los componentes To de los bornes para los conductores externos To de los bornes para los conductores externos To de la resistencia a cortocircuitos To de la resistencia a cortocircuitos To de la compatibilidad electromagnética To del funcionamiento mecánico To del funcionamiento mecánico To del grado de protección To del grado de protección To del grado de las distancias de aislamiento To de las distancias de aislamiento To de las cortocircuitos de protección To del funcionamiento mecánico To del funcionamiento de las líneas de fuga To del las conexiones To del conex

Certificado de ensayo

Nombre del conjunto:	N.º de pedido:		
Lista de operaciones que debe realizar el fabricante del conjur	ito de conformidad con la norma IEC 6143	9-2	
Ensayos individuales		Realizado	No aplicable
1 - Inspección del equipamiento		_	
1.1. Correspondencia entre el diagrama de cableado y la inst	alación de la envolvente		
1.2. Correspondencia del material instalado y la lista de los c	omponentes		
1.3. Comprobación visual del grado de protección de la envol	vente (art. 11.2)		
1.4. Verificación de las distancias de aislamiento en el aire co	n el ensayo de tensión a 50 Hz (art. 11.3)		
 1.5. Verificación de las distancias de aislamiento a través de l medición física o visual (art. 11.3) 	a superficie (línea de fuga) mediante		
1.6. Verificación de la correcta instalación de los aparatos (ar			
1.7. Verificación por muestreo de las conexiones eléctricas (a			
1.8. Verificación por borne para conductores externos (art. 1			
1.9. Verificación del correcto funcionamiento mecánico (art. 1	1.8)		
2 - Verificación de la continuidad de los circuitos de protección	art. 11.4)		
2.1. Verificación visual de las interconexiones			
2.2. Verificación por medio de un indicador acústico			
2.2. Verificación por medio de un indicador óptico			
3 - Ensayo dieléctrico y ensayo de aislamiento (art. 11.9)			
3.1. Tensión de ensayo de 1890 Vrms 50 Hz con una duración	de aplicación de 1 s		
3.2. Tensión de ensayo de 500 V con una resistencia superior alimentación)	a 1000 Ω /V (aplicada a la tensión de		
4 - Cableado y prestaciones en condiciones de utilización (art. 1	1.10)	_	
4.1. Circuito principal con inserción completa de circuitos			
4.2. Secuencia de fases			
4.3. Circuitos auxiliares con inserción completa de equipos			
4.4. Funcionamiento de los órganos de mando			
4.5. Desconexión de los dispositivos diferenciales por medio			
4.6. Lectura y control de la instrumentación			
5 - Inspección final			
5.1. Verificación de la correspondencia de las etiquetas coloca	das		
5.2. Recuperación y adición de la documentación que se debe	adjuntar		
Fecha:			
Nombre del inspector:	Persona presente en la inspección:		—
Firma: Persona presente en la inspección:			

Informe de inspección (ejemplo)

Ν.ο.

INFORMACIÓN GENERAL

Nombre de la empresa del fabricante (constructor del cuadro): Dirección:

Tipo de cuadro de distribución: Identificación del cuadro de distribución: Año de fabricación: Nombre de proyecto: Número de proyecto:

Dimensiones del cuadro de distribución: ... x ... x ... mm

DATOS TÉCNICOS

V ca Frecuencia: Tipo de conexión a tierra: TT/TN-C/S/IT* V ca Grado de contaminación: 1/2/3/4* Ui (tensión de aislamiento): Instalación: interior/exterior/fija/móvil* Uimp (tensión soportada al impulso): Un (tensión de mando) 230 V ca Tensión divergente de control: V ca 24 V ca Grado de protección: IP .. Resistencia a impactos: IK Α Clasificación EMC: A/B* Α Isc/cw* (corriente rms de cortocircuito): Formato: 1/2/3/4 - A/B* Isc con dispositivo de protección aguas arriba: kΑ Factor de simultaneidad asignado (RFD): Ipk (Corriente de cresta de cortocircuito): Índice de servicio: Sección del sistema de carriles principal: 3P/3P+N Sección del sistema de carriles secundario: 3P/3P+N Sección del carril de conexión a tierra:... Sección transversal del enlace PEN:

PROCEDIMIENTO DE INSPECCIÓN

Inspección de conformidad con la IEC 61439-1/2 y las directrices de Legrand

Punto de inspección	Elemento	Aceptado	N/A	Rechazado	Corregido	Comentarios	
2	Comprobación visual						
2.01	CDmontado de acuerdo con el plano						
2.02	No hay daños/desconchados/arañazos, ni cuerpos extraños, etc.						
2.03	CD limpio, por dentro y por fuera						
2.04	Prensaestopas del tipo apropiado y montados en cantidad suficiente						
3	Sistema de carriles principal/secundario (IEC 61439-1, sección 11.6)						
3.01	Aplicación de pares de apriete apropiados						
3.02	Protección rms						
3.03	Códigos fijados a los soportes de los carriles						
3.04	Distancias entre los soportes de los carriles						
3.05	Utilización de soportes de los carriles adecuados						
3.06	Utilización de una sección de CU adecuada						
3.07	Presencia de tendido/compartición						
3.08	Presencia de carril de conexión a tierra						
3.09	Presencia de enlace PEN						
3.10	Presencia de distribuidores con un valor de kA adecuado						
3.11	Distancias de aislamiento y líneas de fuga conformes con las especificaciones de Legrand y la IEC 61439-1						
4	Cableado						
4.01	Sección del cableado						
4.02	Cableado tendido a cierta distancia de los sistemas de carriles						
4.03	Colores de los cables						
4.04	Codificación de los cables						
4.05	Cableado conectado correctamente y a suficiente distancia de los bordes afilados						
4.06	No hay cables dañados						
4.07	Cableado tendido de forma ordenada						
4.08	Cableado conectado de conformidad con el diagrama de instalación						
4.09	Aplicación de cableado de 90°						
4.10	Etiquetas de advertencia para las derivaciones aguas arriba						
5	Componentes						
5.01	Instalación conforme al diseño y las especificaciones de los proveedores						
5.02	Inspección mecánica						

Punto de inspección	Elemento	Aceptado	N/A	Rechazado	Corregido	Comentario
5.03	Resistencia a cortocircuitos de los componentes		,			
5.04	Orientación correcta de los componentes					
5.05	Ajuste de automáticos de potencia					
5.06	Ajuste de interruptores de protección de motores					
5.07	Todos los componentes se entregan en la posición "Off"					
5.08	Instalación apropiada para las especificaciones eléctricas					
5.09	El color de los pulsadores y los indicadores iluminados es adecuado					
5.10	Correcto funcionamiento de los dispositivos de enclavamiento					
5.11	Los dispositivos de enclavamiento están creados de conformidad con las especificaciones					
5.12	Bloques de terminales con conexiones roscadas presentes					
5.13	Aplicación de pares de apriete apropiados					
6	Bastidor de montaje					
6.01	Si es de clase 1, la envolvente está totalmente conectada a un conductor de protección					
6.02	Si en la puerta hay componentes con U ≥ 50 V, la puerta está conectada a tierra					
6.03	Todos los perfiles DIN están atornillados correctamente					
6.04	Placas de montaje correctamente instaladas					
		F	Resistencia de a	islamiento > 0,5 l	MO Ilmin = 500 '	/
7	Ensayos			ada en bloques di		
7.01	Ensayo de aislamiento	Silic		I Story and a stor	2.000000011 * 2	
7.01a	Resistencia de aislamiento L1-L2					
7.01b	Resistencia de distamiento L2-L3					
7.01c	Resistencia de distamiento E2 E6					
7.01d	Resistencia de aislamiento L1-N					
7.01e	Resistencia de aistamiento L2-N			 		
7.01f	Resistencia de alstamiento L2-N			1		
7.01a	Resistencia de aistamiento L1-PE(N)					
7.01y 7.01h	Resistencia de aistamiento L1-re(N) Resistencia de aistamiento L2-PE(N)					
	Resistencia de aislamiento L3-PE(N)					
7.01i	Resistencia de aistamiento L3-PE[N]	Mínin	عم 1 ما/(ما انحدا	I V) tensión de en	0010 1 W///40 JL	.200 V/)
7.02	Ensayo de alta tensión (ensayo a tensión alterna)					
7.02a	Ensayo de alta tensión L1-L2	Tellsi	ou de eusayo ia	<u>00<ui<690 ten<="" u="" v)=""></ui<690></u>	Sion de ensayo n	07U V
7.02b	Ensayo de alta tensión L2-L3	+				
7.020 7.02c	Finance de alta tensión 13-11					
7.02C 7.02d	Ensayo de alta tensión L1-N			-		
				-		
7.02e	Ensayo de alta tensión L2-N					
7.02f	Ensayo de alta tensión L3-N			-		
7.02g	Ensayo de alta tensión L1-PE(N)					
7.02h	Ensayo de alta tensión L2-PE(N)					
7.02i	Ensayo de alta tensión L3-PE(N)					, , , ,
7.03	Ensayo de continuidad de conexión a tierra	Kesis	tencia < 100 m.	<u> 1</u> U = 6-24 V (sol	o aplicable para 7	(.U3a)
7.03a	Ensayo de continuidad de conexión a tierra con corriente ≥10 A					
7.03b	Ensayo de continuidad de conexión a tierra con aparato de medida de señal + comprobación visual					
7.04	Ensayos de interruptores diferenciales (corriente de fallo)					
	Funcionamiento eléctrico de conformidad con el diagrama de instalación					
8	Envolvente					
8 8.01	Anillas de elevación correctamente instaladas					
8 8.01 8.02	Anillas de elevación correctamente instaladas Las puertas y los paneles frontales están cerrados correctamente					
8 8.01 8.02 8.03	Anillas de elevación correctamente instaladas Las puertas y los paneles frontales están cerrados correctamente Las llaves requeridas están disponibles					
8 8.01 8.02 8.03	Anillas de elevación correctamente instaladas Las puertas y los paneles frontales están cerrados correctamente Las llaves requeridas están disponibles Grado de protección apropiado					
8.01 8.02 8.03 8.04	Anillas de elevación correctamente instaladas Las puertas y los paneles frontales están cerrados correctamente Las llaves requeridas están disponibles Grado de protección apropiado Las particiones se ajustan al formato					
B.01 B.02 B.03 B.04 B.05	Anillas de elevación correctamente instaladas Las puertas y los paneles frontales están cerrados correctamente Las laves requeridas están disponibles Grado de protección apropiado Las particiones se ajustan al formato Los conductores de protección y los conductores de enlaces equipotenciales están instalados de					
B B B B B B B B B B B B B B B B B B B	Anillas de elevación correctamente instaladas Las puertas y los paneles frontales están cerrados correctamente Las llaves requeridas están disponibles Grado de protección apropiado Las particiones se ajustan al formato Los conductores de protección y los conductores de enlaces equipotenciales están instalados de conformidad con la documentación					
B 3.01 3.02 3.03 3.04 3.05 8.06	Anillas de elevación correctamente instaladas Las puertas y los paneles frontales están cerrados correctamente Las llaves requeridas están disponibles Grado de protección apropiado Las particiones se ajustan al formato Los conductores de protección y los conductores de enlaces equipotenciales están instalados de conformidad con la documentación Peso del cuadro de distribución					
8 8.01 8.02 8.03 8.04 8.05 8.06	Anillas de elevación correctamente instaladas Las puertas y los paneles frontales están cerrados correctamente Las llaves requeridas están disponibles Grado de protección apropiado Las particiones se ajustan al formato Los conductores de protección y los conductores de enlaces equipotenciales están instalados de conformidad con la documentación					
8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Anillas de elevación correctamente instaladas Las puertas y los paneles frontales están cerrados correctamente Las llaves requeridas están disponibles Grado de protección apropiado Las particiones se ajustan al formato Los conductores de protección y los conductores de enlaces equipotenciales están instalados de conformidad con la documentación Peso del cuadro de distribución Acabado Placa de características colocada					
8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Anillas de elevación correctamente instaladas Las puertas y los paneles frontales están cerrados correctamente Las laves requeridas están disponibles Grado de protección apropiado Las particiones se ajustan al formato Los conductores de protección y los conductores de enlaces equipotenciales están instalados de conformidad con la documentación Peso del cuadro de distribución Acabado Placa de características colocada Marca CE autoadhesiva en su lugar					
8 8.01 8.01 8.02 8.03 8.03 8.04 8.05 8.06 8.06 9.7 9.9.01 9.02	Anillas de elevación correctamente instaladas Las puertas y los paneles frontales están cerrados correctamente Las llaves requeridas están disponibles Grado de protección apropiado Las particiones se ajustan al formato Los conductores de protección y los conductores de enlaces equipotenciales están instalados de conformidad con la documentación Peso del cuadro de distribución Acabado Placa de características colocada					
7.05 8 8.01 8.02 8.03 8.04 8.05 8.05 8.06 8.07 9 9.01	Anillas de elevación correctamente instaladas Las puertas y los paneles frontales están cerrados correctamente Las laves requeridas están disponibles Grado de protección apropiado Las particiones se ajustan al formato Los conductores de protección y los conductores de enlaces equipotenciales están instalados de conformidad con la documentación Peso del cuadro de distribución Acabado Placa de características colocada Marca CE autoadhesiva en su lugar					
8 0.01 0.01 0.02 0.03 0.03 0.03 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05	Anillas de elevación correctamente instaladas Las puertas y los paneles frontales están cerrados correctamente Las llaves requeridas están disponibles Grado de protección apropiado Las particiones se ajustan al formato Los conductores de protección y los conductores de enlaces equipotenciales están instalados de conformidad con la documentación Peso del cuadro de distribución Acabado Placa de características colocada Marca CE autoadhesiva en su lugar Paneles frontales montados y fijados Codificación de componentes y bloques de terminales roscados					
8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9	Anillas de elevación correctamente instaladas Las puertas y los paneles frontales están cerrados correctamente Las llaves requeridas están disponibles Grado de protección apropiado Las particiones se ajustan al formato Los conductores de protección y los conductores de enlaces equipotenciales están instalados de conformidad con la documentación Peso del cuadro de distribución Acabado Placa de características colocada Marca DE autoadhesiva en su lugar Paneles frontales montados y fijados Codificación de componentes y bloques de terminales roscados Existencia de un lugar en el que quardar la documentación					
8 0.01 8.02 8.03 8.04 8.05 8.06 8.07 9 9.01 9.02 9.03 9.04 9.05 9.05 9.06 9.06 9.06 9.06 9.06 9.06 9.06	Anillas de elevación correctamente instaladas Las puertas y los paneles frontales están cerrados correctamente Las laves requeridas están disponibles Grado de protección apropiado Las particiones se ajustan al formato Los conductores de protección y los conductores de enlaces equipotenciales están instalados de conformidad con la documentación Peso del cuadro de distribución Acabado Placa de características colocada Marca CE autoadhesiva en su lugar Paneles frontales montados y fijados Codificación de componentes y judos Existencia de un lugar en el que guardar la documentación Presencia de los diagramas de instalación					
8	Anillas de elevación correctamente instaladas Las puertas y los paneles frontales están cerrados correctamente Las llaves requeridas están disponibles Grado de protección apropiado Las particiones se ajustan al formato Los conductores de protección y los conductores de enlaces equipotenciales están instalados de conformidad con la documentación Peso del cuadro de distribución Acabado Placa de características colocada Marca CE autoadhesiva en su lugar Paneles frontales montados y fijados Codificación de componentes y bloques de terminales roscados Existencia de un lugar en el que guardar la documentación Presencia de los diagramas de instalación Presencia del diagrama de los bloques de terminales					
3.01 3.02 3.03 3.04 3.05 5.06 3.07 0.01 0.02 0.03 0.04	Anillas de elevación correctamente instaladas Las puertas y los paneles frontales están cerrados correctamente Las laves requeridas están disponibles Grado de protección apropiado Las particiones se ajustan al formato Los conductores de protección y los conductores de enlaces equipotenciales están instalados de conformidad con la documentación Peso del cuadro de distribución Acabado Placa de características colocada Marca CE autoadhesiva en su lugar Paneles frontales montados y fijados Codificación de componentes y judos Existencia de un lugar en el que guardar la documentación Presencia de los diagramas de instalación					

FIRMADO Y ACORDADO

Nombre del **instalador**: Sello de la empresa:

Firma: Firma: Fecha: Fecha:

LÍMITES DE CALENTAMIENTO PARA CONJUNTOS

Ensayo de calentamiento de los conjuntos de conformidad con la norma IEC 61439-1

El ensayo de calentamiento de los conjuntos permite comprobar si los conjuntos funcionan correctamente en las condiciones más desfavorables (corriente, número de equipos, volumen de la envolvente). Permite definir los datos del balance térmico a una temperatura ambiente que no debe superar +40 °C.

En calidad de fabricante original, Legrand ha encargado a un laboratorio reputado la realización de esta comprobación en una configuración representativa.

Estas configuraciones están disponibles en nuestros certificados LOVAG (véase la página 51).

Si se cumplen íntegramente todos los requisitos e instrucciones suministrados por Legrand, el fabricante del conjunto no necesita repetir estas verificaciones en el conjunto acabado.

Cuando el fabricante del conjunto incorpora sus propias configuraciones, se convierte en el fabricante original y, por lo tanto, debe repetir estas verificaciones.

Métodos de ensayo

La verificación de calentamiento definida en la norma IEC 61439-1 se puede llevar a cabo por medio de tres métodos distintos:

MEDIANTE ENSAYOS (SECCIÓN 10.10.2)

Se carga todo el conjunto con una corriente asignada definida en la IEC 61439-1 o por el fabricante original. Una vez que se mantiene el calentamiento en condiciones de servicio, se mide en puntos predefinidos del interior de la envolvente. A continuación, los valores medidos se comparan con los valores admisibles (extraídos de la norma, en la página 68).

El conjunto supera el ensayo si los valores medidos son iguales o inferiores a los valores admisibles.

Medición de los límites de calentamiento en una envolvente XI ³.

MEDIANTE COMPARACIÓN (SECCIÓN 10.10.3)

Los conjuntos verificados mediante su comparación con un conjunto similar que haya sido verificado mediante ensayos deben satisfacer las condiciones siguientes:

- Las unidades funcionales deben ser comparables con un comportamiento térmico similar (diagramas de cableado idénticos, equipos del mismo tamaño, disposiciones y fijaciones idénticas, estructura del conjunto idéntica, cables y cableado idénticos),
- Debe tener el mismo tipo de fabricación,
- Las dimensiones globales deben ser las mismas o mayores,
- Las condiciones de refrigeración deben ser, al menos, tan buenas como las del ensayo (convección natural o forzada, aberturas de ventilación idénticas o más anchas),
- La compartimentación interna debe ser idéntica o menos restrictiva,
- La potencia disipada en una columna no debe ser más alta.

SUSTITUCIÓN DE UN APARATO
Se puede sustituir un aparato por
otro similar de una gama distinta
de la utilizada en la verificación original,
siempre y cuando al someterlo al ensayo
de conformidad con la norma de productos,
la potencia que disipa y el calentamiento
de los bornes sean los mismos o inferiores.
Asimismo, la disposición física interna de
la unidad funcional y sus características
asignadas deben permanecer inalteradas.

LÍMITES DE CALENTAMIENTO PARA CONJUNTOS

MEDIANTE CÁLCULO (SECCIÓN 10.10.4)

Este método solo se puede utilizar en conjuntos con corrientes asignadas de hasta 1600 A.

Existen dos métodos de cálculo, en función de la corriente asignada del conjunto. Ambos métodos determinan la capacidad del armario para disipar calor y comparan este valor con las pérdidas que disipan los equipos y conductores integrados.

■ Conjunto de hasta 630 A

El primer método es aplicable a conjuntos con una corriente asignada de hasta 630 A. La capacidad de una envolvente para disipar calor se determina por medio de resistencias de calentamiento que producen un calor equivalente a la capacidad de disipación de calor indicada de la envolvente. Tras la estabilización, se mide el calentamiento en el aire en la parte superior de la envolvente.

La potencia disipada de las envolventes XL³, DMX³ y DPX³ están disponibles en los anexos.

La temperatura de la envolvente no debe superar el valor que aparece en la tabla adjunta.

Este valor objetivo se compara con las pérdidas disipadas totales de los componentes y conductores integrados, con ciertas condiciones que se indican en la norma IEC 61439-1:

- El fabricante puede proporcionar las pérdidas disipadas de los componentes,
- Distribución uniforme de las pérdidas internas,
- La corriente asignada de los circuitos no debe superar el 80 % de la corriente térmica

al aire libre (Ith),

- El equipo instalado debe disponerse de forma que la circulación del aire no se vea afectada significativamente,
- Los conductores que transporten corrientes de más de 200 A deben disponerse de forma que las pérdidas debidas a las corrientes de Foucault sean insignificantes,
- La sección mínima de todos los conductores se basa en el 125 % de la corriente asignada. Las pérdidas disipadas por todos los conductores y barras se determinan mediante cálculos (véase la tabla de la página 74).

VALORES LÍMITE DE CALENTAMIENTO (EXTRAÍDOS DE LA NORMA IEC 61439-1)				
Componentes del conjunto	Calentamientos admisibles (1) (K)			
Componentes, equipos, subconjuntos, suministros de alimentación	Cumplimiento de sus propias especificaciones particulares (normas de productos), teniendo en cuenta la temperatura ambiente del conjunto ⁽²⁾			
Bornes para conductores externos	70[3]			
Juegos de barras, contactos sobre los juegos de barras, repartición	En función de los materiales que estén en contacto o próximos. Se proporcionan las corrientes asignadas de los juegos de barras de Legrand para diversas opciones de utilización ⁽⁴⁾			
Equipos de control	Metal: 15 ⁽⁵⁾ Material aislante: 25			
Envolventes y paneles externos accesibles	Metal: 30 ⁽⁵⁾ Material aislante: 40			

- (1) El calentamiento se refiere al incremento por encima de la temperatura ambiente. Por lo tanto, el límite de calentamiento es igual a la suma de los valores de la temperatura ambiente y el calentamiento.
- (2) Como norma general, se recomienda una temperatura máxima de 40 °C. Es decir, para la determinación de la potencia que se puede disipar se debe considerar un calentamiento promedio de 25 a 30 K. Por encima de este nivel, puede ser necesario reducir las corrientes permitidas por los equipos, para refrigerar el conjunto por medio de un sistema apropiado o, sencillamente, seleccionar una envolvente más grande.
- (3) El calentamiento de los bornes de conexión y bornas de carril de Legrand no supera 65 K. (4) Las corrientes de los sistemas de juegos de barras y repartición de Legrand se dan para
- un calentamiento máximo de 65 K.
- (5) Estos valores se pueden incrementar (+ 10 K) si las piezas no se tocan a menudo durante el funcionamiento normal.

■ Conjunto de hasta 1600 A

El segundo método es aplicable a conjuntos con una corriente asignada de hasta 1600 A.

XLPRO³ incluye algoritmos de cálculo con esta finalidad. El método se basa en la norma IEC

60890 y también incluye datos de numerosos ensayos realizados en nuestros laboratorios. El principio de balance térmico de Legrand se explica en profundidad en la página siguiente.

El calentamiento del conjunto se puede determinar en función de las pérdidas totales, por medio del método de cálculo de la norma IEC 60890.

Este método se puede utilizar si se cumplen las condiciones para el primer método de la página 68, con las adiciones siguientes:

- Para envolventes con aberturas de ventilación: la sección transversal de las aberturas de salida de aire debe ser, al menos, 1,1 veces la sección transversal de las aberturas de entrada de aire,
- No puede haber más de tres separaciones horizontales en cada sección del conjunto,
- Si las envolventes con aberturas de ventilación externa deben dividirse en compartimentos, el área de las aberturas de ventilación de cada separación horizontal interior debe ser igual, como mínimo, al 50 % de la sección transversal horizontal del compartimento.

RESULTADOS OBTENIDOS

El CONJUNTO recibe la verificación si la temperatura del aire calculada a la altura de montaje de cada aparato no supera la temperatura ambiente del aire admisible indicada por el fabricante.

Para los aparatos de conexión o los componentes eléctricos de los circuitos principales, esto significa que la carga en estado estable no supera ni la carga admisible a la temperatura del aire puntual calculada ni el 80 % de su corriente asignada.

Conjuntos de más de 1600 A.

No es posible comprobar la conformidad de los límites de calentamiento de los conjuntos de más de 1600 A por medio de los métodos de cálculo de la IEC 61439-2.

LÍMITES DE CALENTAMIENTO PARA CONJUNTOS

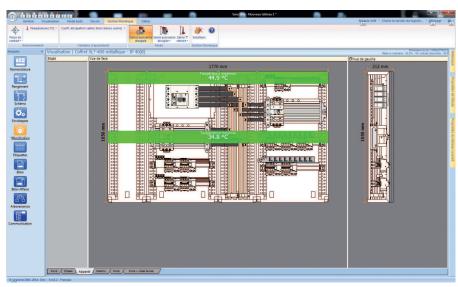
Balance térmico

El software XLPRO³ incluye un módulo de gestión térmica. Con este módulo resulta fácil comprobar los límites de calentamiento en el interior de un conjunto de conformidad con la norma IEC 61439-1, y se pueden definir directamente las soluciones de gestión térmica de Legrand más adecuadas para las dimensiones de las envolventes, los volúmenes y las condiciones especificadas.

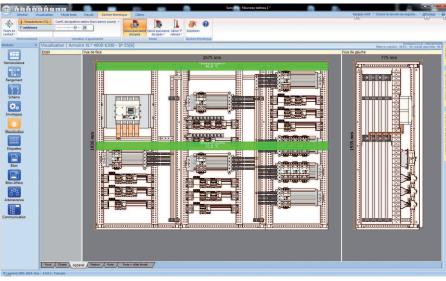
Los algoritmos de cálculo de Legrand (descritos en las páginas 72 a 78) se basan en el método de cálculo del calentamiento del aire en el interior de un conjunto que aparece en la norma IEC 60890 y están contrastados con los resultados de numerosos ensayos realizados en nuestros laboratorios.

El software incorpora las potencias disipadas de todos los equipos DMX³, DPX³, etc., de Legrand (véase la página 101 de los anexos) y las potencias que pueden disiparse en envolventes de Legrand (véase la página 86 de los anexos) en función de las distintas posiciones en cuanto a las particiones y paredes circundantes.

Se pueden gestionar y adaptar los siguientes parámetros:


- Gestión de los laterales que están en contacto
- Temperatura externa
- Coeficiente de disipación de los cables
- Introducción manual de una potencia disipada
- Introducción de una temperatura interna media

La temperatura media se muestra en el centro y en la parte superior de la envolvente por medio de un código de colores (puede consultar ejemplos en la página siguiente). Este código de colores muestra las diversas temperaturas aceptables e inaceptables en función de parámetros predefinidos.


El módulo de gestión térmica se utiliza para ajustar y sugerir soluciones de Legrand (kits de circulación del aire, unidad de aire acondicionado, véase la página 79) en función de la temperatura inapropiada.

Esta herramienta, que está disponible gratuitamente en XLPRO³, ayuda a los fabricantes del conjunto a validar sus conjuntos acabados.

Ejemplo de diseño con una envolvente XL³ 400.

Ejemplo de diseño con una envolvente XL³ 4000.

DETERMINACIÓN DE LA POTENCIA DISIPADA

Se puede obtener una estimación precisa de la potencia disipada real por medio del método que se indica a continuación. La potencia efectivamente disipada (en W) se

puede definir con la fórmula siguiente:

 $P = (PA + PC) \cdot U \cdot M \cdot S \cdot C \cdot E$ siendo:

Pa: total de potencias individuales disipadas de cada equipo a la corriente asignada

Pc: potencia disipada por el cableado U: factor de utilización

M: factor de marcha

S: factor de simultaneidad

C: factor de conmutación

E: factor de ampliación previsible

■ Total de potencias individuales disipadas de cada equipo a la corriente nominal (P,)

La potencia generada en las envolventes de distribución está asociada, sobre todo, a los interruptores automáticos y al cableado. En las envolventes de sistemas de control y automatización, los elementos que más calor generan son variadores, alimentaciones y contactores. La potencia disipada por el cableado suele ser baja.

RESI	ISTENCIA LINEAL TÍPIC	CA DE CONDUCTORES E	N FUNCIÓN DE SU SEC	CIÓN
Alma de cobre fl	exible de clase 5	Alma rígida	a de clase 2	
Sección	Resistencia	Sección	Resistenc	cia (Ω/km)
(mm²)	(Ω/km^2)	(mm²)	cobre	aluminio
0,5	36,1	50	0,36	0,59
0,75	24	70	0,25	0,44
1	18	95	0,18	0,3
1,5	12,3	120	0,14	0,23
2,5	7,4	150	0,11	0,19
4	4,58	185	0,09	0,15
6	3,05	240	0,07	0,115
10	1,77	300	0,055	0,092
16	1,12	400	0,043	0,072
25	0,72	500	0,033	0,056
35	0,51	630	0,026	0,043

Nota: para simplificar, los valores de resistencia lineal de los conductores se han limitado intencionadamente a los tipos de conductores que se utilizan más a menudo. El valor de resistencia dado corresponde a una temperatura del alma de 40 °C. El factor de intensidad (I2) es predominante en los cálculos. Se pueden consultar las tablas que indican la potencia disipada de los diversos conductores a las corrientes de empleo nominales.

Resulta útil consultar las tablas y los documentos elaborados por los fabricantes de los equipos, que proporcionan valores de referencia de la potencia disipada para su consideración (véanse los anexos).

■ Potencia disipada por el cableado (P_c)

Se puede determinar por medio de la norma IEC 60890-A1 o, de forma más sencilla, considerando la corriente nominal que recorre cada conductor, así como su longitud y sección, y aplicando la fórmula siguiente a cada uno: $P = Rl^2_{med}$

REGLA EMPÍRICA PARA DETERMINAR LA POTENCIA DISIPADA:

La potencia que disipan en una envolvente los equipos y el cableado es más o menos proporcional a la corriente de entrada que llega al cuadro. Si no se dispone de datos precisos, o si se desea obtener una estimación inicial, se puede realizar el cálculo siquiente:

- En las envolventes con una corriente de entrada \leq 400 A, use 1,25 W/A (por ejemplo, para un armario de 63 A. 63 \times 1,25 = 78 W)
- En las envolventes con una corriente de entrada > 400 A y ≤ 1000 A, use 1 W/A
- En las envolventes con una corriente de entrada > 1000 Å, use 0,8 W/A

■ Factor de utilización (U)

Relación entre la potencia consumida real y la potencia nominal en la cabecera de la instalación.

Use un valor de 0,8 (que corresponde a 0,9 ln) para cuadros con una corriente de entrada \leq 400 A y 0,65 (que corresponde a 0,8 ln) para cuadros con corrientes más elevadas.

Nota: Los coeficientes se aplican a la potencia. Corresponden al cuadrado de los coeficientes que se aplicarían al valor de la corriente.

■ Factor de marcha (M)

Relación entre el tiempo de funcionamiento del equipo y el tiempo de parada. En la industria, oscila entre 0,3 y 1.

Use 1 si el tiempo de funcionamiento es superior a 30 minutos y para todas las aplicaciones de calefacción e iluminación.

■ Factor de simultaneidad (S)

Relación entre la carga de los circuitos de salida (secundarios), durante el funcionamiento simultáneo, y la carga máxima de todos los circuitos de salida. Describe lo que también se denomina "factor de coincidencia".

Uso:

S = 1 para 1 circuito (es decir, 100 % de corriente)

S = 0,8 para de 2 a 3 circuitos (es decir, 90 % de corriente)

S = 0,7 para de 4 a 5 circuitos (es decir, 83 % de corriente)

S = 0,55 para de 6 a 9 circuitos (es decir, 75 % de corriente)

S = 0,4 para 10 circuitos o más (es decir, 63 % de corriente)

Este coeficiente refleja el número de circuitos en funcionamiento y sus cargas reales.

El factor de simultaneidad no se debe confundir con el factor de simultaneidad asignado (RFD) definido por la norma IEC 60439-1, que hace referencia a la relación entre la suma de corrientes reales de los circuitos principales y la corriente máxima teórica. Se define mediante la realización de ensayos y se aplica a los valores de corriente (véase a continuación).

Cuando resulte necesario, se debe determinar y modular para cada grupo principal de circuitos (grupo de circuitos de iluminación, grupo de circuitos de tomas, arrancadores para motor, aire acondicionado, etc.).

■ Factor de conmutación (C)

Coeficiente que refleja el número de ciclos u operaciones de conmutación (corrientes de llamada de automatismos rápidos).

Uso

C = 1,2 para ciclos rápidos

C = 1 en otros casos (distribución)

■ Factor de ampliación previsible (E)

Se debe considerar de forma individual para cada caso. Se puede usar un valor de 1,2 si no se dispone de información precisa.

■ Factor de simultaneidad asignado (RFD)

La nueva norma IEC 61439-1 incorpora un factor de simultaneidad asignado que permite determinar mejor los efectos térmicos que se pueden producir en el interior de un conjunto.

Este factor nuevo, que se expresa como una ratio asociada a las corrientes que circulan por cada circuito de salida, define la cantidad de corriente que puede soportar cada circuito, teniendo en cuenta las influencias mutuas de los demás circuitos y del entorno circundante. De esta forma, este enfoque permite definir una corriente de funcionamiento simultánea y continua de cada circuito sin efectos adversos en el conjunto y sin fuga térmica.

Esto se acerca más al uso real que se puede obtener con los consumidores en una instalación, utilizando la periodicidad de funcionamiento y el factor de utilización de cada circuito.

En el Anexo E de la norma IEC 61439-1 se proporcionan reglas para el cálculo de este factor

Muestran que es posible que algunos circuitos no tengan corriente durante el funcionamiento normal de un conjunto, aunque dichos circuitos se hayan cuantificado para una potencia dada.

Se puede determinar este factor para todo el conjunto o para grupos de circuitos. Tiene en cuenta características específicas de los componentes del conjunto suministrados por el fabricante original.

El fabricante del conjunto tiene la responsabilidad de proporcionar este factor de simultaneidad, al que también se conoce como RFD.

												E EMPLE		ALLU				
								Cond	uctores de	cobre								
S (mn	1²)	0,5	0,75	j	1	1,5		2,	5		4	6	10)	16		25	
I (A)		2	4		6	10		16	20	:	25	32	40)	63	80)	100
P (W/ı	m)	0,15	0,4		0,6	1,2		1,9	3	2	2,9	3,1	2,	3	4,4	4,0	5	7,2
S (W/r	n²)	3	5		50		70		95	1	20	150	18	5	240	2 x 1	85	2 x 240
I (A)		100	125		125	160	,	160	200	2	50	250	31	5	400	63	0	800
P (W/ı	m)	5,1	8		5,6	6,4	,	4,6	7,2	8	3,7	6,9	8,	9	11,2	17,	8	22,4
								Conduc	tores de a	luminio								
S (mn	1²)	3	5		50		70		95	1	20	150	18	5	2	240		300
I (A)		63	80		80	100	,	125	160	1	60	200	25	0	250	31	5	400
P (W/ı	m)	3,2	5,1		3,6	5,9		6,8	7,7	Ę	5,9	7,6	9,3	3	7,2	11,	4	14,7
							Jue	gos de ba	rras y enl	aces de c	obre							
Dimen	siones	12 x 2	12 x 4	15 x 4	18 x 4	25 x 4	25 x 5	32 x 5	50 x 5	63 x 5	75 x 5	80 x 5	100 x 5	2 x 50 x 5	2 x 63 x 5	2 x 75 x 5	2 x 80 x 5	2 x 100 x 5
IP > 30	I (A)	80	125	160	200	250	270	400	600	700	850	900	1050	1000	1150	1300	1450	1600
IF > 30	(W/m)	8,1	7,4	9,6	12,5	14,4	13,1	22,8	33	35,7	45,3	47	53,5	47,4	50,6	57,7	65,7	66,3
IP ≤ 30	I (A)	110	185	205	245	280	330	450	700	800	950	1000	1200	1150	1350	1500	1650	1900
< 00	(W/m)	11,3	12,8	15,8	18,8	17,7	19,6	28,9	45	46,7	54,8	59	70	62,7	69,8	74,4	85	93,4
								Ва	rras flexil	oles								
Dimen	siones	13	x 2	2	0 x 4		24 x 4		24 x 5		32 x 5		40 x 5		50 x	5	50	x 10
ID > 20	I (A)	1	60		250		250		320		400		500		630)	8	00
IP > 30 (W/m)	(W/m)	1.	4,4		14,2		14,2		18,4		23		28,5		36,8	3	40	0,2
IP > 30 (W/m IP ≤ 30	I (A)	2	00		350		400		470		630		700		850)	12	200
1 < 30	(W/m)	2	2,5		35		36		40		43		56		67		7	77

Definiciones de las corrientes de acuerdo con la norma IEC 60947-1 aplicadas a las condiciones de uso estándar para calentamientos de las barras que no superen 65 K.

De forma orientativa, se puede aplicar la siguiente fórmula empírica para juegos de barras trifásicos:

Potencia disipada = 0,15 W/A para una longitud de 1 m.

le: la corriente asignada de empleo que se debe considerar en envolventes con ventilación natural o paneles abiertos con un grado de protección IP s

lthe: la corriente térmica convencional en envolventes correspondiente a las condiciones de instalación más desfavorables. La envolvente no permite la renovación natural del aire (IP > 30).

Las potencias en W/m vienen dadas para un solo polo. En el caso de corriente trifásica, hay que multiplicarlas por tres.

DETERMINACIÓN DE LA POTENCIA QUE PUEDEN DISIPAR LAS ENVOLVENTES

La disipación de potencia P (en W) natural de una envolvente se define por medio de la fórmula siguiente: $P = \Delta t_{med.} \cdot K \cdot S_e$

 Δt_{med} : calentamiento medio del aire de la envolvente (°C)

K: coeficiente de transmisión de calor a través de las paredes (W/°C m²)

Se: área de disipación equivalente (m²)

Cada uno de los términos de la fórmula anterior permite simplificar los cálculos globales de la potencia que se puede disipar. El concepto de calentamiento medio permite reunir distintos valores en un solo valor

del calentamiento del aire de la envolvente (gradiente térmico). El coeficiente K se calcula para el intercambio de calor de una pared horizontal de referencia con un flujo de calor de abajo arriba. Las distintas

paredes de la envolvente se representan por medio del área de disipación equivalente, que a su vez se aplica a una superficie horizontal cuyas condiciones de intercambio de calor son las del coeficiente K con un Δt entre las superficies interior y exterior iqual a Δt_{mod} .

■ Concepto de calentamiento medio (\(\Delta t_{med}\))


La fuente de calor que forman los dispositivos y equipos de una envolvente causa un calentamiento no homogéneo del aire del interior.

Se considera que el calentamiento medio es la media aritmética de los diversos calentamientos observados a distintas alturas del interior de la envolvente.

La experiencia ha demostrado que este valor siempre está situado en un punto entre un tercio y la mitad de la altura de la envolvente. Aunque se utiliza el calentamiento medio para calcular la potencia que se puede disipar, es

importante conocer el calentamiento máximo en la parte superior de la envolvente para la instalación de equipos.

relación entre el calentamiento máximo del aire (en la parte superior de la envolvente) y el calentamiento medio viene dada por el coeficiente de gradiente térmico q: $\Delta t_{mad} = g \cdot \Delta t_{max}$

DETERMINACIÓN PRÁCTICA DE LA POTENCIA DISIPADA EN UNA INSTALACIÓN EXISTENTE

- 1) Mida la temperatura ambiente θ_{amb} a una distancia de, al menos, 1 m de la envolvente y 1,50 m del suelo
- 2) Mida la temperatura en el interior de la envolvente θ_{max} aproximadamente a 10 cm por debajo de la superficie superior
- 3) Mida la temperatura en el interior de la envolvente θ_{med} a media altura

- 4) Calcule los valores de calentamiento $\Delta t \max = \theta_{max} \theta_{amb}^{med}$ y $\Delta t_{med.} = \theta_{med.} \theta_{amb}$ 5) Compruebe el valor del gradiente térmico por medio de la ecuación $\Delta t_{med.} = g \cdot \Delta t_{max}$ 6) Calcule el área de disipación equivalente S_e mediante la aplicación de los distintos factores de ponderación (véase la tabla de la pág.
- 7) Determine el valor del coeficiente de transmisión global K en función de Δt_{med}
- 8) Calcule la potencia P (W) por medio de la fórmula P = $\Delta t_{med} \times K \times S_{p}$

■ Coeficiente de transmisión del flujo de calor a través de las paredes (K en W/°C m²)

Este coeficiente describe los intercambios de calor a través de las paredes de la envolvente. Incluye tres métodos de transferencia de calor: conducción, convección y radiación.

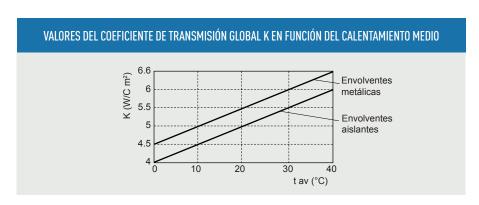
Los últimos dos métodos son los predominantes (en una proporción más o menos igual), mientras que la conducción únicamente tiene un efecto limitado (un pequeño %).

En los intercambios de calor a través de paredes finas, como es el caso de las envolventes eléctricas, la temperatura de las dos superficies es idéntica (o isoterma) y el tipo de material tiene escasa influencia. Como resultado de ello, las envolventes metálicas y las de plástico tienen una capacidad de disipación muy similar.

■ Área de disipación equivalente (S_c)

A cada superficie de intercambio de calor (superficie exterior) se le asigna un coeficiente que depende de su posición relativa en el espacio (vertical u horizontal) y del contacto con las paredes o el suelo (aislada, si está en contacto, o libre, si no lo está).

El área equivalente se determina mediante la suma de las distintas áreas:


Se = S1 + S2 + S3 + S4 + S5 + S6 + S7 + S8 + S9 + S10.

ÁREA DE DISIPACIÓN CORREGIDA Sc

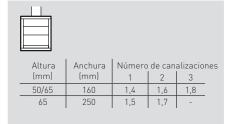
Para obtener directamente el valor de Δt_{max} , se utiliza el concepto de área corregida Sc, donde Sc = Se x q.

Posteriormente, se pueden utilizar las tablas de datos Sc de cada envolvente para realizar un cálculo simplificado.

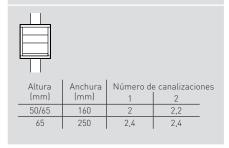
COEFICIENTES QUE SE DEBEN APLICAR A LAS SUPERFICIES REALES PARA EL CÁLCULO DE La envolvente	L ÁREA DE DISIPACIÓN EQUIVALENTE SE EN FU	NCIÓN DEL GRADO IP DE
Superficie	IP ≤ 30	IP > 30
S1: superficie horizontal superior libre	1	1
S2: superficie horizontal superior aislada	0,7	0,5
S3: superficie vertical trasera libre	0,9	0,8
S4: superficie vertical trasera aislada	0,4	0,3
S5: superficie lateral libre	0,9	0,8
S6: superficie lateral aislada	0,4	0,3
S7: superficie horizontal inferior libre	0,6	0,6
S8: superficie horizontal inferior aislada	0,3	0,2
S9: superficie frontal con placas frontales	0,9	0,8
S10: superficie frontal con placas frontales y puerta	0,6	0,6

COEFICIENTES DE CORRECCIÓN QUE SE DEBEN APLICAR A DETERMINADAS CONFIGURACIONES

■ Instalación de armarios con canalización de cables


La potencia que se puede disipar P (W) que se ha determinado se incrementa mediante la multiplicación del coeficiente M.

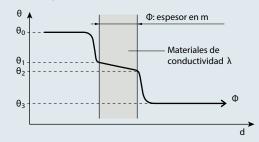
■ Instalación con asociación de dos armarios


La potencia que pueden disipar los dos armarios es igual a la suma de las potencias de cada armario modificada por un coeficiente reductor asociado a la pared común.

COEFICIENTES DE CORRECCIÓN M PARA INSTALACIONES CON CANALIZACIÓN DE CABLES

Canalización en la parte superior del armario

Canalización en las partes superior e inferior del armario


COEFICIENTES DE CORRECCIÓN PARA LA

	ASOCIAC	CIÓN DE DO	S ARMARIO	S
Arma	arios apilado encima del o	os, uno tro	Armarios e uno al lad	
	P1		P1	P2
	P2		PI	PZ
Ρ:	= P1 + 0,8	× P2	P = 0,9 ×	(P1 + P2)

Los cálculos siguientes demuestran dos aspectos esenciales de los conceptos de transferencia de calor en envolventes:

1 - Los métodos de intercambio de calor de convección y radiación desempeñan un papel equivalente en la disipación de calor a temperaturas de funcionamiento

2) Las paredes de la envolvente tienen muy poco efecto en el flujo de transferencia de calor: la temperatura de las superficies interior y exterior son prácticamente idénticas (paredes isotérmicas) y el tipo de material con el que están fabricadas apenas tiene influencia. Por lo tanto, las envolventes de igual tamaño, ya estén fabricadas en plástico o aluminio, tienen prácticamente la misma capacidad de disipación de calor. Los valores θ 0, θ 1, θ 2 y θ 3 indican la temperatura de cada una de las etapas de la transferencia: aire interior, superficie interior, superficie exterior, aire exterior (aire ambiente).

La transferencia de calor a través de una pared se puede descomponer en tres

1 - Flujo entre el fluido interior (aire interior de la envolvente) y la pared:

$$\Phi = h_1 (\theta_0 - \theta_1) S \implies \theta_0 - \theta_1 = \frac{\Phi}{S} \frac{1}{h_1}$$

2. Flujo a través de la pared:

$$\Phi = \frac{\lambda S}{thk} (\theta_1 - \theta_2) \quad \Rightarrow \quad \theta_1 - \theta_2 = \frac{\Phi}{S}$$

3. Flujo entre la pared y el fluido exterior (aire ambiente):

$$\Phi = h_2 (\theta_2 - \theta_3) S \implies \theta_2 - \theta_3 = \frac{\Phi}{S}$$

Al sumar cada uno de los términos de las tres ecuaciones se obtiene el flujo de transferencia global:

$$\theta_0 - \theta_3 = \frac{\Phi}{S} \left(\frac{1}{h_1} + \frac{thk}{\lambda} + \frac{1}{h_2} \right)$$

INTERCAMBIO DE CALOR A TRAVÉS DE UNA PARED

Con la fórmula simplificada:

$$\Phi = K S (\theta_0 - \theta_3) \text{ donde } \frac{1}{K} = \frac{1}{h_1} + \frac{thk}{\lambda} + \frac{1}{h_2}$$

Los coeficientes h1 (intercambio interno) y h2 (intercambio externo) incorporan convección (c) y radiación (r). Asi pues:

$$h_1 = h_{1c} + h_{1r}$$
 y $h_2 = h_{2c} + h_{2r}$

Para calcular h, se utilizan las siguientes dos fórmulas:

$$h_{1c} = h S (\theta_0 - \theta_1)$$
 (Ley de Newton)

El valor de h depende de una serie de factores: flujo, tipo de fluido, temperatura, forma de las superficies. Su cálculo, que es complejo, no se indica aquí.

$$h_{1r} = F S \tau \frac{\theta_0'^4 - \theta_1^4}{\theta_0' - \theta_1}$$

F: coeficiente de absorción mutua asociado a la interacción entre las superficies emisivas de los aparatos contenidos en la envolvente y las paredes de la envolvente (radiación interna)

$$F = \frac{1}{a_1} + \frac{1}{a_2} - 1$$

a, y a,: coeficiente de absorción de las superficies enfrentadas (aparatos y material de la envolvente)

S: superficies enfrentadas, deben ajustarse cuando sea necesario para tener en cuenta el ángulo de incidencia de las superficies.

 τ : constante de Stephan-Boltzmann = 5,7*10⁻⁸ W/m2 K⁴.

 $heta_0$: temperatura de los cuerpos emisores (aparatos internos) si es distinta de θ_0 (la temperatura superficial de los dispositivos, que normalmente es más alta que la del aire interior de la envolvente) h, se calcula de la misma forma que h, restando el cálculo de la radiación a la parte de emisión.

La radiación recibida por las paredes del edificio en el que está instalada la envolvente se ignora:

$$h_{2c} = h S (\theta_2 - \theta_3)$$

 $h_{2r} = S ε τ (\theta_2^4 - \theta_3^4)$ ε: coeficiente de emisividad (0,85 para RAL 7035)

para realizar un cálculo preciso de h_a, se requiere tener conocimientos sobre el espacio en el que está instalada la envolvente para que se pueda utilizar el mismo cálculo que para h...

Nota: varios factores relacionados con los intercambios de calor no tienen valores absolutos. Por ello, el coeficiente de transmisión global a través de la pared K depende de la temperatura. Cuanto mayor sea la diferencia entre las superficies interior y exterior (calentamiento medio), más propicio resulta para el intercambio de calor: K aumenta.

Los intercambios de calor de convección dependen en gran medida de la temperatura del aire y de la pared, la altura de dicha pared y de su posición en el espacio. Por lo tanto, también resulta difícil calcular el flujo de convección (ley de Newton). El concepto de área de disipación equivalente Se permite realizar un cálculo que incorpora estos conceptos (véase la página 115).

• Cálculo de la resistencia a la conducción térmica para una envolvente de acero pintada (por ejemplo, Atlantic)

Plancha de acero, espesor e = 1.5 mm

2 capas de pintura de poliéster 2 x 60 µ $\lambda_2 = 0.2$

λ: coeficiente de conductividad térmica en W/m°C

$$Rcond = \frac{thk}{\lambda} = \frac{1.5 \ 10^{-3}}{52} + \frac{120 \ 10^{-6}}{0.2} = 6.3 \ 10^{-4}$$

Este valor se debe comparar con la resistencia total:

$$Rtot = 1/K$$

usando
$$K_{med.} = 5.5 \text{ W/}^{\circ}\text{C m}^{2}$$
 se obtiene Rtot = 0.18

la resistencia a la conducción de la pared es el 0,35 % de la resistencia total. De hecho, resulta insignificante en el intercambio de calor.

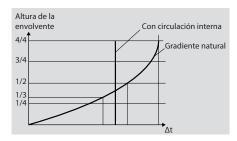
• Cálculo de la resistencia a la conducción térmica para una envolvente fabricada con material aislante

Poliéster reforzado, espesor e=4 mm

Rcond =
$$\frac{thk}{\lambda} = \frac{4 \cdot 10^{-3}}{0.2} = 1.6 \cdot 10^{-2}$$
 (°C m²/W)

En este caso, la resistencia a la conducción es el 9 % de la resistencia total. Sigue siendo insignificante en el intercambio de calor.

El tipo de material con el que está fabricada la envolvente tiene una influencia muy pequeña en el coeficiente de intercambio de calor y, por lo tanto, no constituye un criterio de selección respecto a la disipación de calor.


Equipos de refrigeración

CIRCULACIÓN DEL AIRE EN EL INTERIOR DE LA ENVOLVENTE

GRADIENTE TÉRMICO

Si se hace circular el aire del interior de una envolvente estanca por medio de uno o varios ventiladores, se elimina el concepto de gradiente térmico. La temperatura del aire se vuelve homogénea en toda la envolvente.

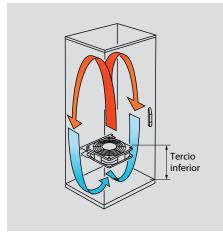
$$\Delta t_{med.} = \Delta t_{max} y g = 1$$

VALOR DE K

Como el intercambio de calor en las paredes sigue siendo laminar, se pueden usar los mismos valores de K.

POTENCIA QUE SE PUEDE DISIPAR

$P = \Delta t \cdot K \cdot S$


Por lo tanto, para un mismo calentamiento máximo admisible, la potencia se puede multiplicar por 1/g.

1/g se sitúa entre 1,4 y 2 si no hay circulación interna. $\Delta t_{med.} = \Delta t_{max}$ y g = 1

SELECCIÓN Y UBICACIÓN DE VENTILADORES

Para una envolvente en la que, por la disposición y la densidad de los componentes, el área de flujo de aire horizontal media sea de, al menos, la mitad del área de la base, el caudal mínimo por segundo del ventilador (o ventiladores) debe ser 0,1 veces el volumen de la envolvente.

Por ejemplo, para una envolvente de 0.5 m^3 , se utilizará un ventilador con un caudal mínimo de 0.05 m^3 /s $(50 \text{ l/s} \text{ o} 180 \text{ m}^3/\text{h})$.

La experiencia ha demostrado que los mejores resultados se obtienen cuando se coloca el ventilador en el tercio inferior de la envolvente.

TRANSFERENCIA DE CALOR POR MEDIO DEL FLUJO DE AIRE (VENTILACIÓN)

POTENCIA TRANSFERIDA (EN W)

 $P = C \cdot \rho \cdot D \cdot \Delta t.$

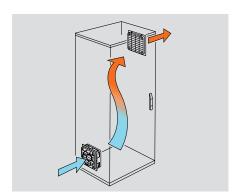
C: calor específico del aire en $J/kg^{\circ}C$ (C = 1000 $J/kg^{\circ}C$)

p: densidad del aire en kg/m3 a la temperatura en cuestión

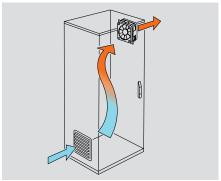
D: caudal en m³/s

Δt: calentamiento del aire en °C

El producto C.p es comparable al calor volumétrico del aire en $(J/m^3$ °C), un coeficiente más fácil de utilizar y al que llamaremos v, con lo que se obtiene $P = v \cdot D \cdot \Delta t$


Se calcula el calor volumétrico del aire v para distintas temperaturas de 0 a 80 °C a una presión atmosférica de 105 Pa.

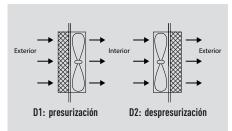
Las variaciones de la densidad ρ se calculan con la fórmula:


 $\rho = \rho_0 \frac{t_0}{t}$ siendo $\rho_0 = 1.293$ y $t_0 = 273$

V (J/°C m³) 0.28 0.30 0.32 0.34 0.36 0.30

En la fórmula $P = v \cdot D$. Δt , v se determina en función de la temperatura, mientras que Δt representa el calentamiento: $\Delta t = t - t_{ambiente}$ Se puede observar que en el rango habitual de temperaturas de envolventes, de 20 a 60 °C, el coeficiente v solo varía un 10 %, lo que podría motivar el uso de un coeficiente medio.

Envolvente presurizada



Envolvente despresurizada

POSICIÓN DEL VENTILADOR

Para no obstaculizar el flujo ascendente natural del aire caliente, el flujo del ventilador debe tener la misma dirección.

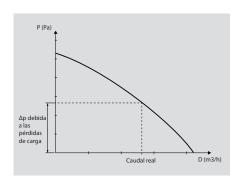
En teoría y considerando que las curvas caudal/presurización y caudal/ despresurización del ventilador son idénticas, la posición del ventilador solo afecta a la potencia que se puede disipar mediante la variación del calor volumétrico u, mientras que el caudal D permanece constante. Por lo tanto, la potencia que se puede disipar debe ser ligeramente inferior cuando la envolvente esté despresurizada.

En la práctica, y en el caso de que se instalen ventiladores de flujo axial con filtros, se observa el fenómeno opuesto:

D2 > D1

Desde un punto de vista práctico:

- La presurización fomenta la hermeticidad de la envolvente, el ventilador funciona a temperatura ambiente y hay menos ruido, pero puede que el caudal se reduzca (véase arriba) y el calor generado por el motor del ventilador afecta al balance térmico.
- Si la envolvente está despresurizada, puede facilitar la entrada de polvo, el ventilador funciona a una temperatura más elevada (vida útil más corta), se genera más ruido y puede que el caudal sea mayor.


Los fabricantes de ventiladores normalmente recomiendan utilizar la primera solución.

INTERPRETACIÓN DE LAS CURVAS DE CARACTERÍSTICAS

Las curvas de caudal/presión deben corresponder al equipo utilizado. La curva de características de un ventilador equipado con filtros e instalado en una envolvente puede ser muy distinta de la de un ventilador "aislado".

Por lo tanto, el caudal real vendrá dado por la curva, tras restar las distintas pérdidas de carga (rejillas, filtros y su posible obstrucción, deflectores, etc.).

USO DE VARIOS VENTILADORES

Si la potencia que se va a disipar o las pérdidas de presión son demasiado grandes, puede resultar necesario instalar varios ventiladores.

En el primer caso, los ventiladores tienen que disponerse en paralelo (unos al lado de otros). El caudal se multiplicará por el número de ventiladores, mientras que la presión disponible permanecerá constante.

En el segundo caso, los ventiladores se tienen que disponer en serie (unos detrás de otros). El caudal será el mismo y la presión aumentará.

Las caídas de presión asociadas a pérdidas de carga varían en función del cuadrado del caudal. Por lo tanto, para duplicar el caudal se requiere una variación cuádruple de la presión y hay que tener en consideración las pérdidas de presión.

POTENCIA TOTAL QUE SE PUEDE DISIPAR

Es la suma de la potencia disipada a través de las paredes de la envolvente y la que se transfiere por medio del flujo de aire, es decir:

 $P = \Delta t1 \cdot K \cdot S + \Delta t2 \cdot v \cdot D$

 Δ t1: Δ t medio en la envolvente = g \cdot Δ tmax

Δt2: Δt entre la entrada y la salida de aire

Para envolventes presurizadas se utilizará v a t ambiente, mientras que para envolventes despresurizadas se utilizará v a t ambiente + $\Delta t2$.

Para aumentar la eficiencia, normalmente las salidas de aire se colocan en la parte superior de la envolvente, de modo que resulta posible lo siguiente $\Delta t2 = \Delta t max$

Esto da el siguiente resultado:

 $P = \Delta t \max (g \cdot K \cdot S + v \cdot D)$

Ventilador ref. 0 348 54 suministrado con un par de rejillas y un filtro lavable.

INFLUENCIA EN EL GRADIENTE TÉRMICO

La evacuación del aire caliente tiende a reducir su acumulación en la parte superior de la envolvente, por lo que cuando Δt max no supera 25 °C y el caudal de ventilación es, al menos, 0,1 veces/s el volumen de la envolvente, el coeficiente g se puede incrementar en 0,1 respecto a los valor de la curva y en 0,2 si el caudal alcanza 0,2 veces/s el volumen de la envolvente (estas reglas son empíricas).

VENTILACIÓN POR TIRO NATURAL CON REJILLAS COLOCADAS EN UN PLANO VERTICAL

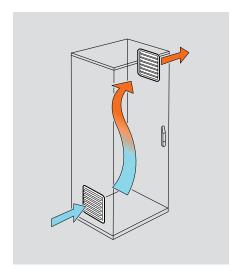
Aunque reduce el grado de protección de la envolvente, el uso de rejillas de ventilación evita la formación de condensación y contribuye a refrigerar el equipo en cierta medida.

La transferencia de calor es limitada.

Los ensayos han demostrado que el caudal de aire depende de una serie de parámetros:

- La diferencia entre las alturas de las rejillas,
- La diferencia entre la temperatura del aire de entrada y el de salida: efecto de convección y calor específico,
- El área de flujo de aire libre de la rejilla.

Se puede usar una fórmula empírica para realizar una estimación del caudal de aire en m³/h:


$D = 0.5 \cdot 10 - 4 \cdot \log h \cdot S2 \cdot \Delta t0.6$

h: diferencia de altura entre los centros de las rejillas de entrada y de salida en cm S: área de flujo de aire en cm² Δt: calentamiento máximo del aire

La potencia disipada se puede calcular de la misma forma que para los ventiladores, usando la fórmula:

$P = v \cdot D \cdot \Delta t$

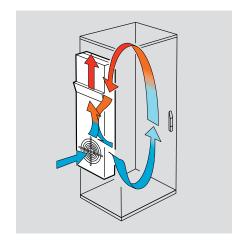
v corresponde a la temperatura de la salida de aire si las rejillas de entrada y de salida tienen la misma área de flujo.

INFLUENCIA EN EL GRADIENTE TÉRMICO

Si las rejillas de entrada y de salida tienen la misma área de flujo, permiten el paso del mismo volumen de caudal, pero su masa de caudal es distinta: el coeficiente g tiende a disminuir (~ 0,05) y el gradiente térmico tiende a hacerse más pronunciado.

Para evitar este fenómeno, las rejillas de salida deben tener un área de flujo mayor que las rejillas de entrada.

Para calcular el caudal D y la potencia P, se debe tomar el área de flujo S de la rejilla de entrada y el calor volumétrico v a temperatura ambiente.


La refrigeración a través de rejillas es limitada.

El tiro natural de aire puede verse obstaculizado fácilmente y es posible que se formen puntos calientes en la envolvente. Por lo tanto, los componentes más sensibles deben colocarse cerca de las entradas, mientras que aquellos que más disipan deben estar cerca de las salidas.

REFRIGERACIÓN POR MEDIO DEL INTERCAMBIADOR DE CALOR

Con los intercambiadores de calor, el aire interior no está en contacto con el aire exterior y no se introduce contaminación en la envolvente, a diferencia del caso de las rejillas y ventiladores.

Los intercambiadores de calor pueden basarse en distintas tecnologías (placas, tubular, tubo termosifón, etc.) y su eficiencia varía en función de la tecnología empleada. Normalmente, el refrigerante utilizado en las envolventes es aire o agua. La cantidad de calor intercambiado es proporcional a la diferencia de temperatura entre el aire del interior de la envolvente y el aire del circuito de refrigeración, en este caso, el aire ambiente.

POTENCIA EVACUADA

Se expresa de la siguiente forma:

$P = \Delta t \cdot Q$

Δt (°C): calentamiento del aire interior Q (W/°C): capacidad específica del intercambiador de calor

INFLUENCIA EN EL GRADIENTE TÉRMICO

La circulación interna del aire creada por el intercambiador de calor iguala las temperaturas en la envolvente de la misma forma que la circulación interna, por lo que se utiliza q = 1

Por lo tanto, la potencia disipada total será:

 $Pt = \Delta t max \cdot K \cdot S \cdot Q$

En ningún caso la temperatura interior de la envolvente puede ser inferior a la temperatura ambiente.

Siempre será más alta debido a la eficiencia del intercambiador de calor, que está entre 0,5 y 0,8.

La capacidad calorífica Q del intercambiador de calor puede variar en función de una serie de parámetros:

- El calentamiento, del que dependen el calor volumétrico y el coeficiente de intercambio en el intercambiador de calor,
- Los caudales de aire, del que dependen las pérdidas de presión y el coeficiente de intercambio.

Por lo tanto, para efectuar un cálculo preciso, es aconsejable consultar las curvas de características del intercambiador de calor.

REFRIGERACIÓN POR MEDIO DE UNA UNIDAD DE AIRE ACONDICIONADO

Como en el caso del intercambiador de calor, el aire del interior de la envolvente no está en contacto con el aire ambiente.

POTENCIA QUE SE PUEDE DISIPAR

Las unidades de aire acondicionado se indican para una capacidad de refrigeración expresada en W o en frig/h. 1 W = 1,16 frig/h

Porlotanto, pueden mantener el calentamiento próximo a cero para una potencia disipada en la envolvente igual a su capacidad de refrigeración.

En este caso, no se produce disipación natural desde la envolvente: Δt = 0 en la fórmula $P = \Delta t \cdot K \cdot S$

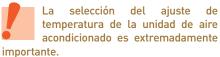
Intercambiador de calor de Legrand

La eficiencia de refrigeración alcanza su valor óptimo en el rango de temperatura ambiente (por ejemplo, de 15 a 35 °C). Disminuye a medida que aumenta la temperatura ambiente. Normalmente se indica para los valores de 35 y 50 °C.

INFLUENCIA EN EL GRADIENTE TÉRMICO

La circulación interna del aire que crea la unidad de aire acondicionado iguala la temperatura de la misma forma que la circulación interna.

Si se permite un determinado aumento de temperatura para el aire interior (dentro de los límites del correcto funcionamiento de la unidad de aire acondicionado), se puede calcular la potencia disipada por la envolvente usando g=1 (véase la página 118), es decir:


 $Pe = \Delta tmax \cdot K \cdot S$

La potencia total que se puede disipar será: P = Pe + Pf

Pf: capacidad de refrigeración al Δt en cuestión

REDUCCIÓN DE LA TEMPERATURA INTERNA DE LA ENVOLVENTE RESPECTO A LA TEMPERATURA AMBIENTE

Dentro de los límites de funcionamiento de la unidad de aire acondicionado (ajuste mínimo y potencia), se puede reducir la temperatura de la envolvente por debajo de la temperatura ambiente

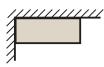
Aparte del aumento del consumo energético, al reducir la temperatura por debajo de la temperatura ambiente, se reduce la potencia que se puede disipar (posteriormente, se debe restar la potencia "capturada" de la temperatura ambiente) y aumenta el riesgo de condensación (efecto de pared fría).

Unidades de aire acondicionado de Legrand

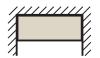
Potencia disipada de las envolventes XL³

Las tablas de las páginas siguientes indican la potencia disipada de las distintas envolventes de la gama XL³, en función de su configuración (con puerta o sin ella, con juntas, etc.) y sus especificaciones de instalación.

	ESPECIFICACIONES DE INSTALACIÓN
· <u></u>	La envolvente está situada en el suelo, y no está en contacto con ninguna superficie (por ejemplo, envolventes autoportantes).
············	La parte trasera de la envolvente está situada contra una superficie vertical (envolvente contra una pared o envolvente de montaje mural). El resto de lados está despejado. Para la clasificación, se considera que la parte trasera de la envolvente está en contacto si la distancia entre la envolvente y la superficie vertical es inferior a 10 cm. Las envolventes de fijación mural se deben instalar, al menos, a 10 cm por encima del suelo.
	La parte trasera y uno de los laterales de la envolvente están en contacto con una superficie vertical (por ejemplo, en una esquina). Para la clasificación, se considera que la envolvente está en contacto si la distancia entre la parte trasera o el lateral y las superficies verticales es inferior a 10 cm.
	La parte trasera y ambos laterales de la envolvente están en contacto con una superficie vertical (por ejemplo, en un conducto o un espacio técnico). Para la clasificación, se considera que la envolvente está en contacto si la distancia entre la parte trasera o los laterales y las superficies verticales es inferior a 10 cm.
<u> </u>	Las partes trasera y superior de la envolvente están en contacto con una superficie (por ejemplo, contra una pared y debajo del techo). Para la clasificación, se considera que la envolvente está en contacto si la distancia entre la parte superior de la envolvente y el techo es inferior a 20 cm. PRECAUCIÓN: Para instalar una unidad de climatización en el techo se requiere una separación de, al menos, un metro por encima de la envolvente.
	Las partes trasera y superior y los laterales de la envolvente están en contacto con una superficie (se puede comparar con un montaje empotrado). Las reglas de distancias anteriores son aplicables: al menos, 10 cm para las superficies verticales y, al menos, 20 cm por encima de la envolvente.


XL³ 160 AISLANTE

Dimensiones (mm)				ΙP	30					ΙP	40					ΙP	43		
an x al x pr sin puerta (con puerta)	Δθ (Κ)	15	20	25	30	35	40	15	20	25	30	35	40	15	20	25	30	35	40
575 x 450 x 145 (170)		41	57	71	86	110	132	34	47	58	71	90	108	31	43	53	65	83	99
575 x 600 x 145 (170)		45	62	78	99	120	141	37	51	64	81	98	116	34	47	59	74	90	106
575 x 750 x 145 (170)	(W)	49	68	90	110	136	161	40	56	74	90	112	132	37	51	68	83	102	121
575 x 900 x 145 (170)		54	75	103	126	155	180	44	62	84	103	127	148	41	56	77	95	116	135
575 x 1050 x 145 (170)		59	86	116	145	171	201	48	71	95	119	140	165	44	65	87	109	128	151


= Solo se puede utilizar si T° < 35 °C, hasta Tmax = 55 °C en el interior de la envolvente

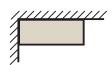
XL3 160 AISLANTE

Dimensiones (mm) an x al x pr sin puerta (con puerta)	Δθ (Κ)	15	20	IP 25	30 30	35	40	15	20	IP 25	40 30	35	40	15	20	IP 25	43 30	35	40
575 x 450 x 145 (170)		40	55	69	84	109	130	33	45	57	69	89	107	30	41	52	63	82	98
575 x 600 x 145 (170)		43	59	77	94	118	140	35	48	63	77	97	115	32	44	58	71	89	105
575 x 750 x 145 (170)	(W)	47	67	87	108	133	158	39	55	71	89	109	130	35	50	65	81	100	119
575 x 900 x 145 (170)		53	74	100	124	150	176	43	61	82	102	123	144	40	56	75	93	113	132
575 x 1050 x 145 (170)		58	85	114	141	167	198	48	70	93	116	137	162	44	64	86	106	125	149


XL3 160 AISLANTE

Dimensiones (mm) an x al x pr sin puerta				ΙP	30					ΙP	40					ΙP	43		
(con puerta)	Δθ (Κ)	15	20	25	30	35	40	15	20	25	30	35	40	15	20	25	30	35	40
575 x 450 x 145 (170)		33	48	61	76	98	113	27	39	50	62	80	93	25	36	46	57	74	85
575 x 600 x 145 (170)		36	52	70	84	110	128	30	43	57	69	90	105	27	39	53	63	83	96
575 x 750 x 145 (170)	(W)	39	60	81	103	129	146	32	49	66	84	106	120	29	45	61	77	97	110
575 x 900 x 145 (170)		46	67	93	113	147	163	38	55	76	93	121	134	35	50	70	85	110	122
575 x 1050 x 145 (170)		51	77	107	126	165	188	42	63	88	103	135	154	38	58	80	95	124	141

= Solo se puede utilizar si T° < 35 °C, hasta Tmax = 55 °C en el interior de la envolvente


XL³ 160 METAL

Dimensiones (mm)				ΙP	30					ΙP	40					ΙP	43		
an x al x pr sin puerta (con puerta)	Δθ (Κ)	15	20	25	30	35	40	15	20	25	30	35	40	15	20	25	30	35	40
575 x 450 x 145 (170)		46	62	78	94	119	145	38	51	64	77	98	119	35	47	59	71	89	109
575 x 600 x 145 (170)		49	68	85	108	133	161	40	56	70	89	109	132	37	51	64	81	100	121
575 x 750 x 145 (170)	(W)	53	74	96	122	150	178	43	61	79	100	123	146	40	56	72	92	113	134
575 x 900 x 145 (170)		60	82	109	138	167	197	49	67	89	113	137	162	45	62	82	104	125	148
575 x 1050 x 145 (170)		65	94	125	158	189	220	53	77	103	130	155	180	49	71	94	119	142	165

XL³ 160 METAL

Dimensiones (mm)				ΙP	30					ΙP	40					ΙP	43		
an x al x pr sin puerta (con puerta)	Δθ (Κ)	15	20	25	30	35	40	15	20	25	30	35	40	15	20	25	30	35	40
575 x 450 x 145 (170)		44	58	73	89	117	139	36	48	60	73	96	114	33	44	55	67	88	104
575 x 600 x 145 (170)		46	62	82	101	128	155	38	51	67	83	105	127	35	47	62	76	96	116
575 x 750 x 145 (170)	(W)	49	70	93	119	147	174	40	57	76	98	121	143	37	53	70	89	110	131
575 x 900 x 145 (170)		55	79	107	136	167	193	45	65	88	112	137	158	41	59	80	102	125	145
575 x 1050 x 145 (170)		62	92	123	154	186	218	51	75	101	126	153	179	47	69	92	116	140	164

= Solo se puede utilizar si T° < 35 °C, hasta Tmax = 55 °C en el interior de la envolvente

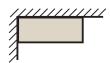
XL³ 160 METAL

8: ()																			
Dimensiones (mm) an x al x pr sin puerta				ΙP	30					ΙP	40					ΙP	43		
(con puerta)	Δθ (K)	15	20	25	30	35	40	15	20	25	30	35	40	15	20	25	30	35	40
575 x 450 x 145 (170)		36	52	67	83	107	124	30	43	55	68	88	102	27	39	50	62	80	93
575 x 600 x 145 (170)		39	57	77	92	121	140	32	47	63	75	99	115	29	43	58	69	91	105
575 x 750 x 145 (170)	(W)	43	66	89	113	141	160	35	54	73	93	116	131	32	50	67	85	106	120
575 x 900 x 145 (170)		50	74	102	124	161	180	41	61	84	102	132	148	38	56	77	93	121	135
575 x 1050 x 145 (170)		56	84	117	138	181	206	46	69	96	113	148	169	42	63	88	104	136	155

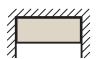
MONTAJE EMPOTRADO DE XL3 160

Discouries and (man)				ΙP	30					ΙP	40		
Dimensiones (mm) an x al x pr sin puerta	Δθ (Κ)	15	20	25	30	35	40	15	20	25	30	35	40
575 x 600 x 110		37	52	69	88	106	125	30	43	57	72	87	103
575 x 750 x 110	(W)	41	60	80	103	123	146	34	49	66	84	101	120
575 x 900 x 110	(VV)	47	71	94	118	138	167	39	58	77	97	113	137
575 x 1050 x 110		54	81	105	136	160	188	44	66	86	112	131	154

= Solo se puede utilizar si T° < 35 °C, hasta Tmax = 55 °C en el interior de la envolvente


XL³ 400 METAL

				ΙP	30					ΙP	40					ΙP	43		
Dimensiones (mm) an x al x pr sin puerta	Δθ (Κ)	15	20	25	30	35	40	15	20	25	30	35	40	15	20	25	30	35	40
660 x 650 x 175		60	81	112	138	169	198	52	73	90	110	138	165	47	65	85	93	129	158
660 x 850 x 175		72	96	122	148	180	220	59	79	95	119	147	175	57	77	89	115	144	164
660 x 1050 x 175		89	119	142	163	218	255	66	89	111	138	165	192	63	86	104	131	161	183
660 x 1250 x 175		110	142	165	185	250	288	86	116	130	153	189	222	81	110	123	148	183	213
660 x 1450 x 175		131	164	189	213	286	328	110	129	146	176	213	254	106	123	132	163	198	236
660 x 1650 x 175		149	187	212	246	319	370	123	141	158	198	243	289	120	136	147	178	235	268
660 x 1850 x 175		174	209	236	279	358	413	141	153	168	212	263	306	134	148	161	193	253	296
660 x 2050 x 175		198	234	258	301	392	457	159	166	186	236	286	323	146	158	174	226	277	318
910 x 1050 x 175	(W)	149	178	193	256	296	365	126	140	153	198	248	293	121	132	147	189	237	287
910 x 1250 x 175	(**)	156	190	235	296	346	415	142	157	174	230	288	337	138	151	168	227	280	329
910 x 1450 x 175		166	201	260	333	390	468	155	170	198	259	326	387	150	167	190	251	317	380
910 x 1650 x 175		180	214	295	373	448	538	170	190	228	280	359	422	165	186	223	277	352	418
910 x 1850 x 175		196	225	325	410	487	579	182	209	245	300	376	448	177	201	240	292	371	438
910 x 2050 x 175		207	237	339	431	515	618	194	220	258	327	394	462	187	213	254	321	390	456
410 x 1450 x 175		84	109	156	192	235	279	62	84	119	156	187	224	57	80	113	150	181	219
410 x 1650 x 175		96	129	176	220	262	314	87	117	130	172	200	249	82	109	127	169	195	243
410 x 1850 x 175		105	151	198	249	300	358	99	132	149	189	230	271	91	127	140	182	221	262
410 x 2050 x 175		119	179	219	276	336	398	111	154	165	207	256	300	106	148	161	196	249	292

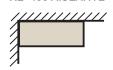

XL³ 400 METAL

				ΙP	30					ΙP	40					ΙP	43		
Dimensiones (an x al x pr sin puerta)	Δθ (Κ)	15	20	25	30	35	40	15	20	25	30	35	40	15	20	25	30	35	40
660 x 650 x 175		56	78	106	130	167	192	50	71	88	108	136	163	45	62	83	91	126	155
660 x 850 x 175		68	94	119	145	176	216	63	75	92	113	142	165	53	75	96	113	143	162
660 x 1050 x 175		87	117	140	159	215	250	65	88	110	136	161	190	61	85	102	130	158	181
660 x 1250 x 175		107	140	163	181	248	281	84	114	126	150	186	219	79	108	121	147	182	211
660 x 1450 x 175		128	160	177	210	283	324	107	125	141	173	212	252	102	121	131	162	197	234
660 x 1650 x 175		145	178	199	242	310	367	120	139	153	190	241	287	117	134	145	175	235	267
660 x 1850 x 175		162	194	227	276	351	410	139	151	167	210	261	304	132	146	160	198	250	294
660 x 2050 x 175		195	231	244	298	374	450	151	161	180	234	283	320	144	156	170	224	275	315
910 x 1050 x 175	(W)	147	176	191	246	288	363	124	138	151	197	245	290	119	130	145	187	235	285
910 x 1250 x 175	(۷۷)	154	187	221	290	336	440	138	155	170	227	286	335	135	150	167	223	279	327
910 x 1450 x 175		162	198	256	329	386	464	151	168	196	256	325	386	149	165	189	250	315	379
910 x 1650 x 175		176	210	291	370	440	511	164	187	224	275	357	420	163	184	220	275	351	416
910 x 1850 x 175		190	221	320	400	481	575	180	206	240	297	374	445	176	200	239	290	369	436
910 x 2050 x 175		204	232	337	427	510	615	189	218	256	324	390	460	185	210	253	319	388	454
410 x 1450 x 175		83	107	155	190	233	277	61	83	117	155	184	223	55	79	110	149	179	217
410 x 1650 x 175		94	127	177	217	260	311	86	116	127	170	199	247	80	106	126	166	194	240
410 x 1850 x 175		102	149	196	247	297	356	97	130	146	185	228	270	90	125	138	180	220	260
410 x 2050 x 175		117	176	216	275	335	394	110	153	164	204	254	297	104	145	160	190	246	290

= Solo se puede utilizar si T° < 35 °C, hasta Tmax = 55 °C en el interior de la envolvente

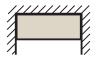
XL³ 400 METAL

				ΙP	30					ΙP	40					ΙP	43		
Dimensiones (an x al x pr sin puerta)	Δθ (Κ)	15	20	25	30		40	15	20	25		35	40	15	20	25	30	35	40
660 x 650 x 175		55	77	104	128	161	190	48	70	87	106	134	161	43	60	81	91	124	153
660 x 850 x 175		65	91	115	142	174	204	62	74	90	111	140	163	52	72	91	109	138	160
660 x 1050 x 175		86	116	131	155	200	245	64	87	109	135	159	189	60	84	101	128	156	179
660 x 1250 x 175		103	138	161	177	246	280	82	112	124	148	184	218	77	106	120	145	181	210
660 x 1450 x 175		125	156	175	208	281	340	105	123	139	171	210	250	100	120	130	160	195	233
660 x 1650 x 175		143	173	197	240	308	364	118	137	150	192	238	286	114	133	144	173	233	265
660 x 1850 x 175		160	193	225	273	348	408	137	150	165	208	260	302	130	144	158	197	248	292
660 x 2050 x 175		193	230	243	296	373	448	150	160	178	233	281	318	142	155	168	221	273	313
910 x 1050 x 175	(W)	145	174	189	245	286	360	123	137	150	198	244	287	115	128	143	186	234	283
910 x 1250 x 175	(**)	153	184	218	285	334	438	135	154	169	225	284	332	134	147	165	220	277	326
910 x 1450 x 175		160	195	254	327	384	462	150	165	190	253	320	383	147	160	185	245	310	375
910 x 1650 x 175		172	208	289	369	438	509	162	185	223	293	352	415	160	181	218	272	348	413
910 x 1850 x 175		189	219	318	395	479	574	176	203	238	294	371	442	173	197	236	287	367	434
910 x 2050 x 175		201	230	335	425	509	610	185	215	253	321	387	456	183	207	251	315	385	451
410 x 1450 x 175		81	105	153	187	231	275	60	82	115	153	182	220	53	75	107	145	176	215
410 x 1650 x 175		93	125	175	216	258	310	85	114	125	168	197	245	79	105	125	164	193	238
410 x 1850 x 175		101	147	194	245	295	354	96	128	144	183	225	267	89	123	135	177	217	257
410 x 2050 x 175		115	175	214	274	334	392	108	151	161	198	251	295	103	143	157	187	244	287


XL³ 400 AISLANTE

				ΙP	30					ΙP	40					ΙP	43		
Dimensiones (an x al x pr sin puerta)	Δθ (Κ)	15	20	25	30	35	40	15	20	25	30	35	40	15	20	25	30	35	40
660 x 650 x 175		50	71	99	125	156	180	47	65	79	98	122	148	43	59	75	82	117	142
660 x 850 x 175	(\A/)	64	82	110	134	161	201	53	72	86	108	131	157	50	70	80	104	127	147
660 x 1050 x 175	(W)	78	105	125	147	197	231	60	82	98	125	149	173	57	77	92	117	145	165
660 x 1250 x 175		99	130	150	167	225	260	78	105	117	138	171	205	73	99	111	134	165	198

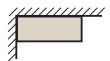
= Solo se puede utilizar si T° < 35 °C, hasta Tmax = 55 °C en el interior de la envolvente


XI 3 / NO AISI ANTE

				ΙP	30					ΙP	40					ΙP	43		
Dimensiones (an x al x pr sin puerta)	Δθ (Κ)	15	20	25	30		40	15	20	25	30		40	15	20	25	30	35	40
660 x 650 x 175		48	69	96	117	151	178	45	62	77	95	120	145	41	56	73	80	114	140
660 x 850 x 175	(147)	61	80	108	131	160	199	51	68	84	105	127	154	48	68	78	102	125	145
660 x 1050 x 175	(W)	77	103	124	145	196	229	58	79	97	123	147	171	55	75	90	115	143	163
660 x 1250 x 175		97	129	147	165	224	258	76	103	114	136	168	203	72	98	109	133	164	195

XL3 400 AISLANTE

				ΙP	30					ΙP	40					ΙP	43		
Dimensiones (an x al x pr sin puerta)	Δθ (Κ)	15	20	25	30	35	40	15	20	25	30	35	40	15	20	25	30	35	40
660 x 650 x 175		47	68	94	116	148	175	43	59	76	94	118	143	39	54	71	78	112	138
660 x 850 x 175	(W)	58	79	104	129	158	197	50	66	81	100	125	150	46	65	76	99	122	143
660 x 1050 x 175	(VV)	75	101	122	142	190	226	56	77	96	122	144	170	53	73	87	113	141	160
660 x 1250 x 175		95	126	145	161	222	255	74	101	112	134	166	200	70	96	107	131	163	192


= Solo se puede utilizar si T° < 35 °C, hasta Tmax = 55 °C en el interior de la envolvente

XL³ 800 METAL

				ΙP	30					ΙP	40					ΙP	43		
Dimensiones (an x al x pr sin puerta)	Δθ (Κ)	15	20	25	30		40	15	20	25	30	35	40	15	20	25	30	35	40
660 x 1050 x 225		91	123	145	188	228	260	70	95	116	144	189	205	68	92	112	139	183	199
660 x 1250 x 225		118	147	168	210	255	294	100	134	144	175	204	248	97	130	139	170	198	241
660 x 1450 x 225		138	168	194	228	294	337	124	141	156	186	228	272	120	137	151	180	221	264
660 x 1650 x 225		155	192	221	253	324	380	141	150	165	200	259	310	137	146	160	194	251	301
660 x 1850 x 225		185	220	243	296	368	423	150	163	179	227	282	329	146	158	174	220	273	320
660 x 2050 x 225		209	242	267	311	410	472	163	175	188	253	305	345	158	170	182	245	295	334
910 x 1050 x 225		154	182	201	262	310	372	134	150	163	215	265	312	130	146	158	208	257	303
910 x 1250 x 225	(W)	161	200	243	309	354	427	159	167	175	253	308	361	154	162	170	245	299	350
910 x 1450 x 225	(VV)	176	208	271	340	403	488	170	179	207	285	348	416	164	174	201	277	337	403
910 x 1650 x 225		187	219	301	382	456	549	189	213	245	319	381	450	183	206	238	309	370	437
910 x 1850 x 225		206	231	336	422	502	592	192	220	266	330	402	478	186	214	258	320	390	464
910 x 2050 x 225		213	247	349	443	527	630	202	234	274	348	418	495	196	227	266	337	405	480
410 x 1450 x 225		93	119	164	201	245	290	66	90	126	167	198	239	64	87	123	162	192	232
410 x 1650 x 225		104	139	186	229	273	324	93	125	143	183	215	267	90	122	138	177	208	259
410 x 1850 x 225		116	162	208	259	310	376	106	140	158	199	244	289	103	136	153	193	237	281
410 x 2050 x 225		129	189	230	287	345	409	118	165	176	210	273	321	114	160	171	203	265	311

XI 3 800 METAI

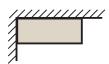
				ΙP	30					ΙP	40					ΙP	43		
Dimensiones (an x al x pr sin puerta)	Δθ (Κ)	15	20	25	30	35	40	15	20	25	30	35	40	15	20	25	30	35	40
660 x 1050 x 225		89	122	144	187	226	258	65	91	110	137	182	196	63	89	107	132	176	190
660 x 1250 x 225		116	146	166	209	251	292	95	127	137	168	196	237	92	123	132	163	190	230
660 x 1450 x 225		137	161	182	227	292	334	118	137	149	179	221	263	114	132	145	173	214	255
660 x 1650 x 225		148	180	205	252	313	379	137	144	158	191	250	299	132	140	153	185	242	290
660 x 1850 x 225		166	201	234	294	366	421	143	158	173	218	273	318	139	153	168	212	265	309
660 x 2050 x 225		201	239	253	309	389	462	158	168	182	286	294	333	153	163	176	277	285	323
910 x 1050 x 225		151	179	194	255	302	369	128	144	158	207	255	301	124	140	153	201	247	292
910 x 1250 x 225	(W)	159	199	240	290	351	420	147	161	168	244	296	348	143	156	163	236	287	337
910 x 1450 x 225	(۷۷)	175	204	268	338	397	478	163	173	200	275	336	402	158	168	194	267	326	390
910 x 1650 x 225		185	218	294	377	452	539	182	205	236	308	368	436	176	199	229	298	356	423
910 x 1850 x 225		198	227	335	418	497	590	186	211	256	318	389	462	180	205	249	308	377	448
910 x 2050 x 225		209	234	347	440	524	627	194	226	264	336	404	479	188	219	256	326	392	464
410 x 1450 x 225		83	108	159	194	239	286	63	86	121	160	190	231	61	84	117	155	184	224
410 x 1650 x 225		97	130	182	224	266	322	88	121	137	175	207	257	86	117	132	170	201	250
410 x 1850 x 225		105	153	200	252	307	366	100	133	150	190	236	278	97	129	146	184	229	270
410 x 2050 x 225		120	182	218	281	343	406	110	158	168	201	265	311	107	153	163	195	257	301

= Solo se puede utilizar si T° < 35 °C, hasta Tmax = 55 °C en el interior de la envolvente

XL³ 800 METAL

				ΙP	30					ΙP	40					ΙP	43		
Dimensiones (an x al x pr sin puerta)	Δθ (Κ)	15	20	25	30	35	40	15	20	25	30	35	40	15	20	25	30	35	40
660 x 1050 x 225		87	118	140	185	224	255	62	88	107	133	177	193	61	86	104	129	171	188
660 x 1250 x 225		113	142	163	206	251	289	90	125	133	165	193	234	88	121	129	160	188	227
660 x 1450 x 225		134	158	178	226	288	335	114	133	146	174	216	257	111	129	141	168	210	249
660 x 1650 x 225		144	175	201	250	309	376	132	140	154	187	244	294	128	136	149	182	237	285
660 x 1850 x 225		162	196	229	291	363	419	140	155	171	215	270	315	135	151	166	209	262	306
660 x 2050 x 225		196	235	247	304	383	455	154	167	179	284	291	331	150	162	173	275	282	321
910 x 1050 x 225		146	175	191	250	252	368	125	143	153	203	250	296	121	139	148	197	242	288
910 x 1250 x 225	(W)	155	196	240	255	301	418	142	156	163	239	291	342	138	151	158	232	282	332
910 x 1450 x 225	(۷ ۷)	172	201	263	335	399	484	159	170	194	270	330	395	154	164	189	262	320	383
910 x 1650 x 225		182	213	288	376	460	530	177	200	230	302	361	430	171	194	223	293	350	417
910 x 1850 x 225		193	221	332	405	502	599	181	208	252	315	382	457	176	202	244	306	370	443
910 x 2050 x 225		204	231	341	434	522	625	189	222	260	330	398	471	184	215	252	320	386	457
410 x 1450 x 225		80	106	155	191	235	281	59	83	116	156	187	226	58	81	113	151	182	219
410 x 1650 x 225		93	126	177	218	262	316	85	116	132	172	203	252	83	113	128	166	197	244
410 x 1850 x 225		103	149	196	247	301	361	97	130	147	187	231	274	94	126	142	182	224	265
410 x 2050 x 225		115	178	213	276	339	399	106	153	164	198	260	307	103	148	159	192	252	298

= Solo se puede utilizar si T $^{\circ}$ < 35 $^{\circ}$ C, hasta Tmax = 55 $^{\circ}$ C en el interior de la envolvente


XL³ 400 IP 55

				ΙP	65		
Dimensiones (an x al x pr con puerta)	Δθ (Κ)	15	20	25	30	35	40
700 x 695 x 205		33	49	68	83	106	120
700 x 895 x 205	(W)	51	62	75	92	115	135
700 x 1095 x 205	(VV)	63	82	94	115	142	170
700 x 1295 x 205		81	93	102	127	156	184

= Solo se puede utilizar si T° < 35 °C, hasta Tmax = 55 °C en el interior de la envolvente

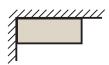
XI 3 // ON IP 55

				ΙP	65		
Dimensiones (an x al x pr con puerta)	Δθ (Κ)	15	20	25	30	35	40
700 x 695 x 205		32	47	67	82	105	118
700 x 895 x 205	(W)	50	60	73	88	107	125
700 x 1095 x 205	(VV)	60	78	88	110	132	158
700 x 1295 x 205		80	89	95	120	144	173

XL³ 400 IP 55

				ΙP	65		
Dimensiones (an x al x pr con puerta)	Δθ (Κ)	15	20	25	30	35	40
700 x 695 x 205		30	45	65	81	99	115
700 x 895 x 205	(W)	48	58	68	85	105	122
700 x 1095 x 205	(VV)	58	76	85	107	130	154
700 x 1295 x 205		79	87	93	117	140	168

= Solo se puede utilizar si T° < 35 °C, hasta Tmax = 55 °C en el interior de la envolvente


XL³ 800 IP 55

		IP 30								ΙP	65		
Dimensiones (an x al x pr sin puerta)	Δθ (Κ)	15	20	25	30	35	40	15	20	25	30	35	40
700 x 1095 x 250		-	-	-	-	-	-	58	78	99	123	152	181
700 x 1295 x 250		-	-	-	-	-	-	70	85	109	136	166	198
700 x 1495 x 250		109	136	180	230	277	326	80	107	145	181	220	260
700 x 1695 x 250		122	162	201	252	305	362	99	119	159	201	242	289
700 x 1895 x 250		133	171	223	274	334	397	120	137	173	220	265	318
700 x 2095 x 250		142	182	246	298	364	427	137	156	188	245	288	337
950 x 1095 x 250		-	-	-	-	-	-	109	126	152	184	222	267
950 x 1295 x 250	(W)	-	-	-	-	-	-	125	137	167	210	247	297
950 x 1495 x 250	(VV)	147	172	249	317	383	451	138	170	200	248	309	359
950 x 1695 x 250		178	194	258	325	393	463	169	186	208	257	318	371
950 x 1895 x 250		194	205	266	334	402	478	190	203	216	266	328	384
950 x 2095 x 250		203	217	276	348	421	493	200	212	227	277	339	401
500 x 1495 x 250		106	132	163	198	233	286	73	97	142	177	207	251
500 x 1695 x 250		119	148	174	231	253	319	90	109	149	193	237	280
500 x 1895 x 250		131	158	192	253	311	331	111	127	169	217	259	315
500 x 2095 x 250		139	170	221	276	334	383	134	152	180	235	283	328

XL³ 800 IP 55

	IP 30									ΙP	65		
Dimensiones (an x al x pr sin puerta)	Δθ (Κ)	15	20	25	30	35	40	15	20	25	30	35	40
700 x 1095 x 250		-	-	-	-	-	-	56	72	97	120	147	177
700 x 1295 x 250		-	-	-	-	-	-	67	82	106	134	163	193
700 x 1495 x 250		104	133	176	223	270	320	77	102	143	180	217	256
700 x 1695 x 250		117	147	192	241	291	345	93	112	156	196	257	282
700 x 1895 x 250		128	157	209	258	312	371	110	132	170	213	258	307
700 x 2095 x 250		137	166	226	275	334	396	132	152	184	232	284	332
950 x 1095 x 250		-	-	-	-	-	-	107	122	140	180	218	260
950 x 1295 x 250	(W)	-	-	-	-	-	-	122	132	164	206	243	293
950 x 1495 x 250	(VV)	144	169	235	294	360	427	135	163	192	245	295	353
950 x 1695 x 250		175	191	248	310	381	452	165	179	202	254	306	364
950 x 1895 x 250		192	200	262	326	400	476	186	198	212	262	320	381
950 x 2095 x 250		200	207	269	344	419	490	191	204	225	272	333	398
500 x 1495 x 250		103	130	158	192	231	283	70	93	138	166	201	247
500 x 1695 x 250		116	140	169	228	249	310	87	101	145	188	230	273
500 x 1895 x 250		128	150	187	249	307	326	108	119	165	210	252	306
500 x 2095 x 250		137	165	217	270	328	375	124	147	171	229	279	325

= Solo se puede utilizar si T° < 35 °C, hasta Tmax = 55 °C en el interior de la envolvente

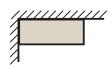
XL³ 800 IP 55

				ΙP	30					ΙP	65		
Dimensiones (an x al x pr sin puerta)	Δθ (Κ)	15	20	25	30	35	40	15	20	25	30	35	40
700 x 1095 x 250		-	-	-	-	-	-	50	65	95	118	145	173
700 x 1295 x 250		-	-	-	-	-	-	65	84	102	131	159	187
700 x 1495 x 250		101	130	161	203	243	289	93	119	133	166	214	244
700 x 1695 x 250		114	143	179	228	275	325	110	139	149	187	232	269
700 x 1895 x 250		125	152	199	252	307	358	117	149	165	209	250	295
700 x 2095 x 250		133	163	219	273	330	393	128	159	199	230	273	320
950 x 1095 x 250		-	-	-	-	-	-	101	120	136	173	215	255
950 x 1295 x 250	(W)	-	-	-	-	-	-	119	129	161	201	239	291
950 x 1495 x 250	(۷ ۷)	141	164	230	291	355	419	130	152	188	240	291	348
950 x 1695 x 250		172	189	245	306	376	446	155	169	199	250	303	362
950 x 1895 x 250		190	195	259	321	397	473	173	189	209	260	315	377
950 x 2095 x 250		197	204	267	336	416	486	185	199	221	269	327	392
500 x 1495 x 250		99	128	154	189	229	279	67	89	133	163	195	241
500 x 1695 x 250		113	137	165	223	245	307	83	97	141	185	227	270
500 x 1895 x 250		120	147	183	244	301	321	103	115	160	205	246	302
500 x 2095 x 250		131	160	213	264	323	372	120	143	168	221	272	320

XL³ 4000

				ΙP	30					ΙP	55		
Dimensiones (an x al x pr) - dimensiones internas útiles	Δθ (Κ)	15	20	25	30	35	40	15	20	25	30	35	40
600 x 2000 x 350		167	249	353	456	548	646	156	215	325	386	467	547
600 x 2000 x 600		276	359	438	557	659	788	263	340	419	528	639	759
600 x 2000 x 850		352	428	512	641	788	909	348	419	501	627	755	891
850 x 2000 x 350		283	356	441	552	672	791	172	246	386	481	583	691
850 x 2000 x 600		302	413	512	641	773	916	286	398	465	579	701	813
850 x 2000 x 850		366	441	582	722	861	1019	352	428	546	683	829	973
350 x 2000 x 350		97	163	272	389	488	589	84	158	258	365	472	571
350 x 2000 x 600		170	236	341	442	531	640	159	224	338	429	519	621
350 x 2000 x 850	(W)	278	337	428	539	662	781	265	329	415	526	649	768
600 x 2200 x 350	(**)	179	261	366	461	561	660	181	229	341	398	471	559
600 x 2200 x 600		281	372	462	581	702	832	286	392	431	540	651	772
600 x 2200 x 850		368	442	528	668	793	943	362	431	519	641	767	909
850 x 2200 x 350		297	361	471	591	712	849	186	259	397	492	599	709
850 x 2200 x 600		311	426	532	663	806	946	298	412	477	588	715	823
850 x 2200 x 850		376	459	620	779	944	1102	369	442	558	697	842	986
350 x 2200 x 350		105	171	282	396	496	595	92	163	269	384	481	585
350 x 2200 x 600		182	245	360	452	551	649	170	234	351	442	530	637
350 x 2200 x 850		288	348	461	578	702	833	276	337	448	559	687	795

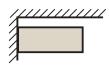
= Solo se puede utilizar si T° < 35 °C, hasta Tmax = 55 °C en el interior de la envolvente


XL³ 4000

Discouries of the second state of the second				ΙP	30					ΙP	65		
Dimensiones (an x al x pr) - dimensiones internas útiles	Δθ (Κ)	15	20	25	30		40	15	20	25	30	35	40
600 x 2000 x 350		159	237	335	433	521	614	148	204	309	367	444	520
600 x 2000 x 600		262	341	416	529	626	749	250	323	398	502	607	721
600 x 2000 x 850		334	407	486	609	749	864	331	398	476	596	717	846
850 x 2000 x 350		269	338	419	524	638	751	163	234	367	457	554	656
850 x 2000 x 600		287	392	486	609	734	870	272	378	442	550	666	772
850 x 2000 x 850		348	419	553	686	818	968	334	407	519	649	788	924
350 x 2000 x 350		92	155	258	370	464	560	80	150	245	347	448	542
350 x 2000 x 600		162	224	324	420	504	608	151	213	321	408	493	590
350 x 2000 x 850	(W)	264	320	407	512	629	742	252	313	394	500	617	730
600 x 2200 x 350	((V V)	170	248	348	438	533	627	172	218	324	378	447	531
600 x 2200 x 600		267	353	439	552	667	790	272	372	409	513	618	733
600 x 2200 x 850		350	420	502	635	753	896	344	409	493	609	729	864
850 x 2200 x 350		282	343	447	561	676	807	177	246	377	467	569	674
850 x 2200 x 600		295	405	505	630	766	899	283	391	453	559	679	782
850 x 2200 x 850		357	436	589	740	897	1047	351	420	530	662	800	937
350 x 2200 x 350		100	162	268	376	471	565	87	155	256	365	457	556
350 x 2200 x 600		173	233	342	429	523	617	162	222	333	420	504	605
350 x 2200 x 850		274	331	438	549	667	791	262	320	426	531	653	755

XL³ 4000

Disconsistence (see u.s.) disconsistence				ΙP	30					ΙP	65		
Dimensiones (an x al x pr) - dimensiones internas útiles	Δθ (Κ)	15	20	25		35	40	15	20	25	30		40
600 x 2000 x 350		151	225	319	412	495	583	141	194	293	348	421	494
600 x 2000 x 600		249	324	395	503	595	711	237	307	378	477	577	685
600 x 2000 x 850		318	386	462	579	711	820	314	378	452	566	681	804
850 x 2000 x 350		255	321	398	498	606	714	155	222	348	434	526	624
850 x 2000 x 600		273	373	462	579	698	827	258	359	420	523	633	734
850 x 2000 x 850		330	398	525	652	777	920	318	386	493	616	748	878
350 x 2000 x 350		88	147	245	351	440	532	76	143	233	329	426	515
350 x 2000 x 600		153	213	308	399	479	578	143	202	305	387	468	560
350 x 2000 x 850	(W)	251	304	386	486	597	705	239	297	375	475	586	693
600 x 2200 x 350	(VV)	162	236	330	416	506	596	163	207	308	359	425	504
600 x 2200 x 600		254	336	417	524	634	751	258	354	389	487	588	697
600 x 2200 x 850		332	399	477	603	716	851	327	389	468	579	692	820
850 x 2200 x 350		268	326	425	533	643	766	168	234	358	444	541	640
850 x 2200 x 600		281	384	480	598	727	854	269	372	430	531	645	743
850 x 2200 x 850		339	414	560	703	852	995	333	399	504	629	760	890
350 x 2200 x 350		95	154	255	357	448	537	83	147	243	347	434	528
350 x 2200 x 600		164	221	325	408	497	586	153	211	317	399	478	575
350 x 2200 x 850		260	314	416	522	634	752	249	304	404	504	620	717


= Solo se puede utilizar si T° < 35 °C, hasta Tmax = 55 °C en el interior de la envolvente

XL³ 4000

S				ΙP	30					ΙP	65		
Dimensiones (an x al x pr) - dimensiones internas útiles	Δθ (Κ)	15	20	25	30	35	40	15	20	25	30	35	40
600 x 2000 x 350		143	213	303	391	470	554	134	184	279	331	400	469
600 x 2000 x 600		237	308	376	478	565	676	225	292	359	453	548	651
600 x 2000 x 850		302	367	439	550	676	779	298	359	430	538	647	764
850 x 2000 x 350		243	305	378	473	576	678	147	211	331	412	500	592
850 x 2000 x 600		259	354	439	550	663	785	245	341	399	496	601	697
850 x 2000 x 850		314	378	499	619	738	874	302	367	468	586	711	834
350 x 2000 x 350		83	140	233	334	418	505	72	135	221	313	405	490
350 x 2000 x 600		146	202	292	379	455	549	136	192	290	368	445	532
350 x 2000 x 850	(W)	238	289	367	462	568	670	227	282	356	451	556	658
600 x 2200 x 350	(((V)	153	224	314	395	481	566	155	196	292	341	404	479
600 x 2200 x 600		241	319	396	498	602	713	245	336	370	463	558	662
600 x 2200 x 850		316	379	453	573	680	809	310	370	445	550	658	779
850 x 2200 x 350		255	310	404	507	610	728	159	222	340	422	514	608
850 x 2200 x 600		267	365	456	568	691	811	255	353	409	504	613	706
850 x 2200 x 850		322	394	532	668	809	945	316	379	478	598	722	845
350 x 2200 x 350		90	147	242	340	425	510	79	140	231	329	412	502
350 x 2200 x 600		156	210	309	388	472	556	146	201	301	379	454	546
350 x 2200 x 850		247	298	395	496	602	714	237	289	384	479	589	682

XL³ 4000

Disconsistence (on wall was) disconsistence				ΙP	30					ΙP	55		
Dimensiones (an x al x pr) - dimensiones internas útiles	Δθ (Κ)	15	20	25			40	15	20	25	30	35	40
600 x 2000 x 350		155	231	328	424	509	601	145	200	302	359	434	508
600 x 2000 x 600		257	334	407	518	613	733	244	316	389	491	594	706
600 x 2000 x 850		327	398	476	596	733	845	323	389	466	583	702	828
850 x 2000 x 350		263	331	410	513	625	735	160	229	359	447	542	642
850 x 2000 x 600		281	384	476	596	719	851	266	370	432	538	652	756
850 x 2000 x 850		340	410	541	671	800	947	327	398	508	635	771	904
350 x 2000 x 350		90	152	253	362	454	548	78	147	240	339	439	531
350 x 2000 x 600		158	219	317	411	494	595	148	208	314	399	482	577
350 x 2000 x 850	(W)	258	313	398	501	615	726	246	306	386	489	603	714
600 x 2200 x 350	(VV)	166	243	340	429	521	614	168	213	317	370	438	520
600 x 2200 x 600		261	346	429	540	653	773	266	364	401	502	605	718
600 x 2200 x 850		342	411	491	621	737	877	337	401	482	596	713	845
850 x 2200 x 350		276	336	438	549	662	789	173	241	369	457	557	659
850 x 2200 x 600		289	396	495	616	749	879	277	383	443	547	665	765
850 x 2200 x 850		350	427	576	724	878	1024	343	411	519	648	783	917
350 x 2200 x 350		98	159	262	368	461	553	86	152	250	357	447	544
350 x 2200 x 600		169	228	335	420	512	603	158	218	326	411	493	592
350 x 2200 x 850		268	323	429	537	653	774	257	313	416	520	639	739

= Solo se puede utilizar si T° < 35 °C, hasta Tmax = 55 °C en el interior de la envolvente

XL³ 4000

Discouries (source) discouries				ΙP	30					ΙP	65		
Dimensiones (an x al x pr) - dimensiones internas útiles	Δθ (Κ)	15	20	25	30		40	15	20	25	30	35	40
600 x 2000 x 350		147	220	312	403	484	570	138	190	287	341	412	483
600 x 2000 x 600		244	317	387	492	582	696	232	300	370	466	564	670
600 x 2000 x 850		311	378	452	566	696	803	307	370	442	554	667	787
850 x 2000 x 350		250	314	389	487	593	699	152	217	341	425	515	610
850 x 2000 x 600		267	365	452	566	683	809	253	351	411	511	619	718
850 x 2000 x 850		323	389	514	638	760	900	311	378	482	603	732	859
350 x 2000 x 350		86	144	240	344	431	520	74	140	228	322	417	504
350 x 2000 x 600		150	208	301	390	469	565	140	198	298	379	458	548
350 x 2000 x 850	(W)	246	298	378	476	585	690	234	291	366	465	573	678
600 x 2200 x 350	((V V)	158	230	323	407	495	583	160	202	301	351	416	494
600 x 2200 x 600		248	329	408	513	620	735	253	346	381	477	575	682
600 x 2200 x 850		325	390	466	590	700	833	320	381	458	566	677	803
850 x 2200 x 350		262	319	416	522	629	750	164	229	351	434	529	626
850 x 2200 x 600		275	376	470	585	712	835	263	364	421	519	631	727
850 x 2200 x 850		332	405	548	688	834	973	326	390	493	616	744	871
350 x 2200 x 350		93	151	249	350	438	525	81	144	238	339	425	517
350 x 2200 x 600		161	216	318	399	487	573	150	207	310	390	468	563
350 x 2200 x 850		254	307	407	510	620	736	244	298	396	494	607	702

DMX³ - Potencia disipada (W)

			VERSI	ÓN FIJA	
Tamaño		1		2	3
Legrand		DMX ³ 1600	DMX ³ 2500	DMX ³ 4000	DMX ³ 6300
Número de polos		3-4	4	3-4	3-4
Tipo de relé		Electr	rónico	Electrónico	Electrónico
Corriente asignada	(A)		()	W)	
	630	19	13	10	-
	800	31	20	16	-
	1000	48	32	25	-
	1250	75	50	39	-
	1600	123	82	64	-
	2000		128	100	-
	2500		200	156	-
	3200			256	-
	4000			400	208
	5000				325
	6300				516

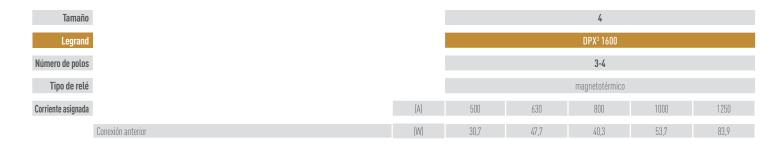
			VERSIÓN	EXTRAÍBLE	
Tamaño		1		2	3
Legrand		DMX ³ 1600	DMX ³ 2500	DMX ³ 4000	DMX ³ 6300
Número de polos		3-4	4	3-4	3-4
Tipo de relé		Electr	ónico	Electrónico	Electrónico
	()				
Corriente asignada	(A)		((W)	
	630	42	32	19	-
	800	67	51	31	-
	1000	105	80	48	-
	1250	164	125	75	-
	1600	269	205	123	-
	2000		128	192	-
	2500		320	300	-
	3200			492	-
	4000			768	400
	5000				625
	6300				992

DPX³ 160 - Potencia disipada (W)

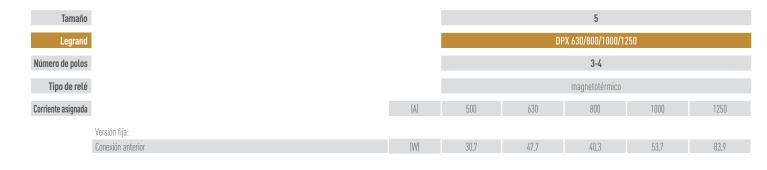
Tamaño							1			
Legrand						DP	X ³ 160			
Número de polos						;	3-4			
Tipo de relé						magne	totérmico			
Corriente asignada		(A)	16	25	40	63	80	100	125	160
	Bornes de conexión		2,8	5,0	5,1	6,7	7,0	11,0	12,5	15,4
	Terminales		2,8	5,0	5,1	6,7	7,0	11,0	12,5	24,3
	Conexión anterior	(\ \ /)	2,8	5,0	5,1	6,7	7,0	11,0	12,5	15,4
	Espaciadores	(W)	2,8	5,0	5,1	6,7	7,0	11,0	12,5	20,5
	Conexión posterior		2,8	5,0	5,1	6,7	7,0	11,0	12,5	25,1
	Versión extraíble		2,8	5,1	5,4	7,5	8,3	13,0	15,6	20,5

DPX³ 250 - Potencia disipada (W)


Tamaño			3		3						
Legrand		DP.	X ³ 250		DPX ³ 250 diferencial						
Número de polos		;	3-4		4						
Tipo de relé	relé							magnetotérmico			
Corriente asignada	(A)	100	160	200	250	100	160	200	250		
Terminales		8,1	15,1	22,8	29,4	9,2	17,4	25,6	37,5		
Bornes de conexión		8,1	15,1	22,8	29,4	9,2	17,4	25,6	37,5		
Conexión anterior	(\A/)	8,1	15,1	22,8	29,4	9,2	17,4	25,6	37,5		
Espaciadores	(W)	8,1	15,1	22,8	29,4	9,2	17,4	25,6	37,5		
Conexión posterior		8,1	15,1	22,8	29,4	9,2	17,4	25,6	37,5		
Versión extraíble		10,0	20,5	30,8	41,9	11,2	22,5	33,6	50,0		


					1	1								
			DPX ³ 160 c	diferencial				DPX ³ 1 160 DPX ³ 160 MS						
				4	3									
			magneto	N/A	solo magnético									
16	25	40	63	80	100	125	160	160	16	25	50	63		
2,8	5,0	5,1	6,7	7,0	11,0	12,5	15,4	9,2	0,1	0,2	0,9	1,4		
2,8	5,0	5,1	6,7	7,0	11,0	12,5	24,3	9,2	0,1	0,2	0,9	1,4		
2,8	5,0	5,1	6,7	7,0	11,0	12,5	15,4	9,2	0,1	0,2	0,9	1,4		
2,8	5,0	5,1	6,7	7,0	11,0	12,5	20,5	9,2	0,1	0,2	0,9	1,4		
2,8	5,0	5,1	6,7	7,0	11,0	12,5	25,1	9,2	0,1	0,2	0,9	1,4		
2,9	5,1	5,4	7,5	8,3	13,0	15,6	20,5	14,3	0,1	0,4	1,4	2,2		

3			3			3			3-4				3										
	DPX ³	250			DPX ³ 250	diferencia	al	DPX ³ I 250				DPX ³ 250 MS			DPX ³ 250 AB				DPX ³ 250 AB diferencial				
	3-	4				4		4 3				3-4				4							
	electrónico electrónico						N/	'A		magnético			electrónico			electrónico							
40	100	160	250	40	100	160	250	-	-	-	250	100	160	200	250	90	130	170	240	90	130	170	240
0,3	2,0	5,1	12,5	0,5	3,0	7,7	18,8	-	-	-	18,8	3,0	7,7	12,0	18,8	1,6	3,4	5,8	11,5	2,4	5,1	8,7	17,3
0,3	2,0	5,1	12,5	0,5	3,0	7,7	18,8	-	-	-	18,8	3,0	7,7	12,0	18,8	1,6	3,4	5,8	11,5	2,4	5,1	8,7	17,3
0,3	2,0	5,1	12,5	0,5	3,0	7,7	18,8	-	-	-	18,8	3,0	7,7	12,0	18,8	1,6	3,4	5,8	11,5	2,4	5,1	8,7	17,3
0,3	2,0	5,1	12,5	0,5	3,0	7,7	18,8	-	-	-	18,8	3,0	7,7	12,0	18,8	1,6	3,4	5,8	11,5	2,4	5,1	8,7	17,3
0,3	2,0	5,1	12,5	0,5	3,0	7,7	18,8	-	-	-	18,8	3,0	7,7	12,0	18,8	1,6	3,4	5,8	11,5	2,4	5,1	8,7	17,3
0,6	4,0	10,2	25,0	0,8	5,0	12,8	31,3	-	-	-	31,3	3,0	7,7	12,0	18,8	3,2	11,6	11,6	23,0	4,1	8,5	14,5	28,8

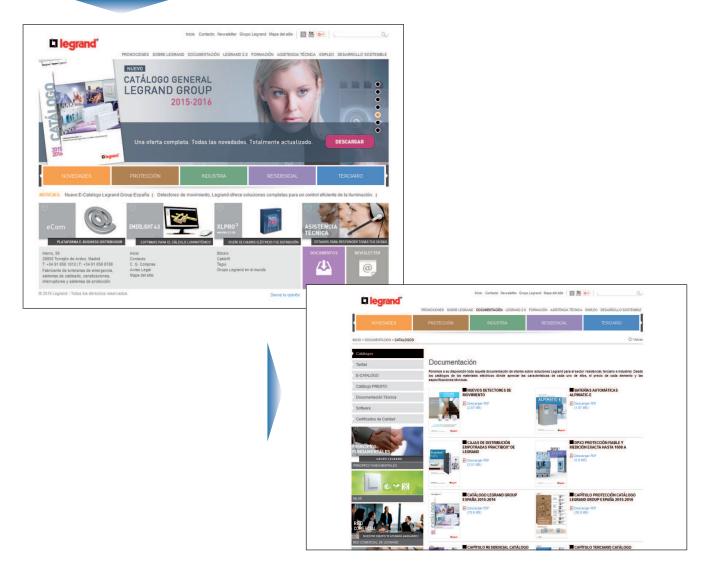

DPX³ 630 - Potencia disipada (W)

DPX3 1600 - Potencia disipada (W)

DPX 630 a 1600 - Potencia disipada (W)

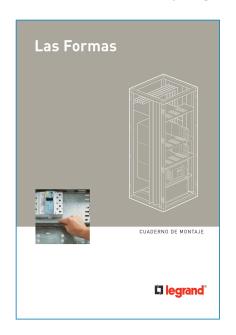
	4											4				4		
	DPX3 630											DPX ³ I 400/630				DPX ³ 630 MS		
	3-4											3-4				3		
	electrónico											sin protección						
2	50	320		4	400		550		630		400		30	320	400	630		
Fase	Neutro	Fase	Neutro	Fase	Neutro	Fase	Neutro	Fase	Neutro	Fase	Neutro	Fase	Neutro	Fase	Fase	Fase		
7,5	7,5	12,3	12,3	19,2	19,2	22,1	22,1	N/A	N/A	25,6	25,6	37,3	37,3	12,3	19,2	35,0		

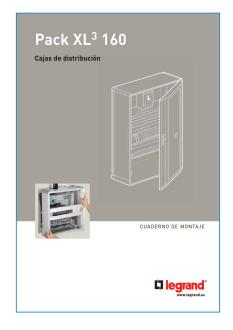
		4			4									
		DPX ³ 1600			DPX3 11600									
		3-4			3-4									
		electrónico			sin protección									
500	630	800	1000	1250	500	630	800	1000	1250	1600				
30,7	47,7	40,3	53,7	83,9	32,0	50,8	29,8	47,6	74,4	65,3				

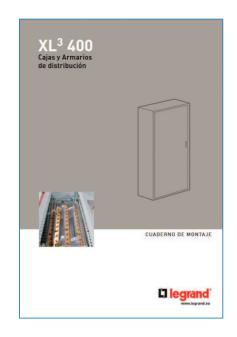

	5			5			5			5	
	DPX 630/800			DPX 1250/1600			DPX I 630/800		DPX	DPX I 1600	
	3-4			3-4			3-4		3	3-4	
	electrónico			electrónico			sin protección		sin pro	sin protección	
500	630	800	1000	1250	1600	500	630	800	1000	1250	1600
11,6	18,5	29,8	47,6	74,4	65,3	32,0	50,8	29,8	47,6	74,4	65,3

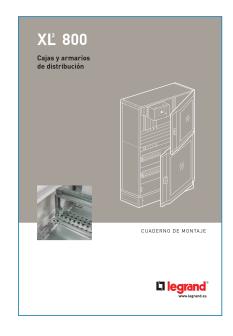
BIBLIOTECA DE DOCUMENTACIÓN

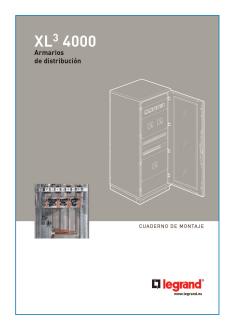
Todos los datos técnicos de los productos incluidos en el presente libro de especificaciones de taller están disponibles en:

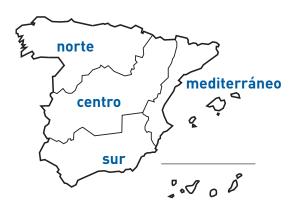

http://www.legrand.es


Haga clic en
DESCARGAR DOCUMENTOS






Cuadernos de montaje y guías técnicas



Zona Centro

es-centro@legrandgroup.es

Tel: 91 648 79 22 Fax: 91 676 57 63

Zona Mediterráneo

es-mediterraneo@legrandgroup.es

Tel: 93 635 26 60 Fax: 93 635 26 64

Zona Sur

es-sur@legrandgroup.es

Tel: 95 465 19 61 Fax: 95 465 17 53

Zona Norte

es-norte@legrandgroup.es Tel: 983 39 21 92/46 19 Fax: 983 30 88 81

Asistencia Técnica

Tel y Fax : 902 100 626 sat.espana@legrandgroup.es

Atención al Distribuidor

Tel: 902 100 454 Fax: 902 190 823 pedidos.espana@legrandgroup.es

Ilegrand

LEGRAND GROUP ESPAÑA, S.L. Hierro, 56 - Apto. 216 28850 Torrejón de Ardoz Madrid

Tel.: 91 656 18 12 Fax: 91 656 67 88 www.legrand.es